Redatto in collaborazione con

Ire
Infrastrutture Recupero Energia
Agenzia Regionale Ligure
6.6.1. Le ricadute economiche ed occupazionali derivanti dalle fonti rinnovabili 169
6.6.2. Le ricadute economiche ed occupazionali derivanti dall’introduzione di misure di efficientamento energetico nel settore residenziale ... 172
6.7. La ricerca e lo sviluppo nel settore energetico in Liguria ... 184
6.8. Il Monitoraggio del Piano - Le prestazioni energetiche .. 191
ALLEGATO 1 - Il Quadro normativo sui temi ambientali ... 196
ALLEGATO 2 - Sintesi degli aspetti ambientali e misure di attenzione/ mitigazione 199
ALLEGATO 3 - Piano di Monitoraggio .. 233
Legenda .. 242
1. Premessa

La Regione Liguria, con il presente documento, intende procedere all’aggiornamento del Piano Energetico Ambientale Regionale (PEAR) approvato dal Consiglio Regionale con Deliberazione del 2 dicembre 2003 n. 43 e successivamente modificato con Deliberazione del Consiglio Regionale del 3 febbraio 2009, n. 3 relativamente agli obiettivi per la fonte eolica.

La proposta di PEAR, con il relativo Rapporto Ambientale e sintesi non tecnica, è stata sottoposta all’inchiesta ed alla consultazione pubblica nell’ambito del percorso di Valutazione Ambientale Strategica (VAS) ed è stata approvata con DGR n. 1517 del 5/12/2014. A seguire, la fase di Istruttoria dell’Autorità Competente per la VAS, attraverso consultazioni con i soggetti competenti in materia ambientale e con le strutture regionali in relazione alle tematiche trattate, si è concretizzata nel Parere Motivato (PM) n. 47/2015, da cui risulta la sostenibilità del Piano condizionata all’ottenenza di alcune prescrizioni1.

Il presente documento rappresenta dunque il PEAR adeguato al Parere Motivato ed è frutto di un lavoro di collaborazione e condivisione a livello regionale, che si è tradotto anche nell’attivazione di tavoli tecnici per l’approfondimento di specifici argomenti (Tavolo tecnico per la per la definizione dei criteri utili alla revisione della Cartografia delle aree non idonee alla collocazione di impianti eolici e Tavolo tecnico per la definizione dei criteri utili alla mappatura dei tratti fluviali non idonei alla collocazione di impianti idroelettrici).

A seguito di tale processo di adeguamento, il PEAR presenta 3 nuovi allegati (All.1 “Il Quadro normativo sui temi ambientali”; All.2 “Sintesi degli aspetti ambientali e misure di attenzione mitigazione”; All.3 “Piano di Monitoraggio”) al fine di integrare e adeguare una serie di aspetti ambientali, in origine trattati nel Rapporto Ambientale, interessati dalle prescrizioni del PM e a cui è necessario dare riscontro.

In particolare le misure di attenzione/mitigazione relative ad ogni tecnologia e/o settore presentate in Allegato 2, rappresentano un utile strumento di indirizzo per i proponenti in quanto definiscono puntualmente elementi volti a migliorare la qualità progettuale e documentale, ad omogeneizzare e velocizzare le procedure di autorizzazione e, pertanto, a rendere più efficace l’iter procedurale e autorizzativo degli impianti.

In tal senso, il Piano intende coordinare le linee strategiche in materia di politiche energetiche con quelle riferite allo sviluppo economico, alla ricerca e all’innovazione, alla formazione ed allo sviluppo rurale per quanto attiene la filiera energetica. Se da un lato i contenuti del Piano fanno riferimento ad un quadro di finalità ed obiettivi stabiliti su base europea e nazionale (c.d. obiettivi di Burden Sharing), dall’altro infatti il PEAR vuole tener conto di come il raggiungimento di tali obiettivi possa tradursi in opportunità sotto il profilo economico, occupazionale e di salvaguardia e valorizzazione del territorio se opportunamente accompagnato da misure di sostegno alla filiera energetica (dalla ricerca alla formazione) e da una puntuale

1 Per il dettaglio dell’iter normativo e procedurale del PEAR e per le indicazioni specifiche circa l’ottenenza di ogni prescrizione del PM si rimanda alla Dichiarazione di Sintesi prevista dal processo di VAS ed elaborata coerentemente al PEAR adeguato.
e ampia attività di comunicazione e informazione indirizzata ai diversi target di interesse (imprese, associazioni di categoria, enti locali, scuole, centri di ricerca, ecc.).

Come anticipato, nel presente documento si individuano obiettivi generali sulla base delle opportunità e dei vincoli imposti dal quadro normativo di riferimento, declinando tali obiettivi in linee di sviluppo che tengano conto del contesto d’azione del Piano con particolare riferimento alle specificità (ambientali e paesaggistiche) ed alle vocazioni (industriali, tecnologiche e turistiche) del territorio ligure.

Più in particolare, i tre macro-obiettivi del Piano (raggiungimento degli obiettivi previsti dal Burden Sharing, sviluppo economico e comunicazione) si articolano in due obiettivi generali verticali: la **diffusione delle fonti rinnovabili (elettriche e termiche)** ed il loro inserimento in reti di distribuzione “intelligenti” (**smart grid**) e la **promozione dell’efficienza energetica** e su due obiettivi generali orizzontali: il **sostegno alla competitività del sistema produttivo regionale** e l’**informazione dei cittadini e formazione degli operatori sulle energie**, a loro volta declinati secondo linee di sviluppo e azioni specifiche coordinate con la **programmazione dei fondi POR FESR 2014 - 2020**.

Gli obiettivi generali verticali del Piano sono analizzati sotto il profilo qualitativo e quantitativo sulla base dell’analisi della situazione attuale in Liguria e dei possibili scenari di sviluppo e crescita tenendo conto dei punti di forza, di debolezza, delle opportunità e minacce per ciascuno degli obiettivi specifici individuati.

Per l’individuazione degli obiettivi generali e delle linee di sviluppo relativamente alla produzione di energia da fonti rinnovabili si è proceduto attraverso un’analisi tecnica articolata per tipologia di fonte rinnovabile (fotovoltaico, biomassa, eolico, ecc.), valutando lo stato attuale delle installazioni, criticità emerse nel corso dell’attuazione del precedente PEAR, e condizioni al contorno che possono limitare o rappresentare opportunità di sviluppo della fonte stessa.

Per quanto attiene l’obiettivo generale di incremento dell’efficienza energetica sono state individuate alcune linee di sviluppo relative ai settori residenziale, terziario (pubblico e privato), imprese e cicli produttivi, effettuando una stima delle loro possibili ricadute in termini di riduzione dei consumi: come è ovvio anche in questo caso le proiezioni effettuate devono tener conto delle variabili al contorno derivanti, ad esempio, da sistemi di incentivazione nazionale e da misure che Regione Liguria potrà mettere in atto per il sostegno al raggiungimento degli obiettivi finali.

In relazione all’obiettivo generale “informazione e formazione” grande rilievo si è dato ai processi di partecipazione che vedono il coinvolgimento dei diversi portatori di interesse, delle scuole, dei centri di ricerca, dei Poli di Ricerca e Innovazione liguri. Il tema della formazione, anche grazie al coordinamento con le azioni previste nell’ambito della programmazione 2014-2020 in materia di Green Economy (e già sperimentate nell’ambito del “Piano Giovani” della Regione Liguria, finanziato a valere sul Fondo Sociale Europeo per la programmazione in essere), è da considerarsi un elemento qualificante del Piano sia sotto il profilo della comunicazione diffusa ai cittadini liguri sull’importanza dei temi energetici, che come strumento di supporto alla crescita economica delle imprese appartenenti alla filiera energetica.

I possibili scenari, data la natura strategica del Piano ed il suo sviluppo, non possono tener conto di tutte le variabili che potrebbero sostenere o ostacolare il raggiungimento degli obiettivi e che non dipendono dalle scelte e dalle politiche messe in atto a livello regionale quali modifiche normative e misure di incentivazione stabilite a livello nazionale, fattori connessi all’andamento dell’economia, ecc.

Il Piano rappresenta quindi un valido strumento di supporto alle decisioni, sia in sede di programmazione dei Fondi Comunitari 2014-2020 che di monitoraggio dell’attuazione delle politiche energetiche regionali. In ultimo si intende evidenziare come il PEAR 2014-2020 preveda il coinvolgimento costante ed attivo dei singoli territori sia nella fase di pianificazione delle azioni che del loro monitoraggio. Saranno a tal fine da tenere in grande considerazione le iniziative che i Comuni e le Province liguri stanno portando avanti nell’ambito del **Patto dei Sindaci** e relativamente al tema **Smart Cities**.
2. Il quadro normativo in materia di energia

Si riporta nel seguito il quadro di riferimento relativo alle norme ed agli strumenti di pianificazione in materia di energia vigenti a livello europeo, nazionale e regionale. Occorre tenere presente che il quadro normativo è in continua evoluzione.

Per quel che riguarda il richiamo agli strumenti normativi sui temi ambientali si rimanda all’Allegato 1 “Il Quadro normativo sui temi ambientali”.

2.1. La normativa europea

Gli interventi dell’Unione Europea (UE) sui temi dell’energia hanno seguito un’evoluzione progressiva nel tempo: inizialmente l’energia non era stata inserita negli accordi di Roma che diedero vita all’allora Comunità Europea e a suo tempo le scelte energetiche su questo tema differivano per ogni paese comunitario sulla base delle proprie regole nazionali su tali materie. Solo successivamente, all’emergere a livello internazionale dei problemi legati al cambiamento climatico provocato dalle emissioni antropogene di gas climateranti (principalmente CO₂ prodotta nella combustione dei combustibili fossili), l’UE ha inserito l’energia tra le sue competenze attraverso i temi dell’ambiente e del cambiamento climatico, della competitività, della coesione sociale, della garanzia delle forniture, della ricerca scientifica e del commercio transfrontaliero.

Il quadro normativo europeo in materia di ambiente ed energia è oggi consistente ed articolato; la più moderna legislazione, che costituisce il quadro di riferimento per le politiche energetiche nazionali e locali, fonda le sue radici sul Protocollo di Kyoto, il trattato entrato in vigore il 16 febbraio 2005 che prevedeva obiettivi vincolanti e quantificati di limitazione e riduzione dei gas ad effetto serra. In seguito la Commissione Europea ha avviato una serie di Direttive, raccomandazioni, piani e strategie al fine di mettere in atto gli obiettivi della politica ambientale delineata con il Protocollo e tra questi il Libro Verde della Commissione dell’8 marzo 2006 "Una strategia europea per un'energia sostenibile, competitiva e sicura", che costituisce una tappa fondamentale nello sviluppo di una politica energetica dell'Unione Europea al fine di affrontare sfide importanti nel settore dell'energia: dipendenza crescente dalle importazioni, volatilità del prezzo degli idrocarburi, cambiamento climatico, aumento della domanda e ostacoli sul mercato interno dell'energia.

I tre pilastri fondamentali delle politiche energetiche europee sono la sostenibilità ambientale, la sicurezza degli approvvigionamenti e la competitività dell'economia europea.

Il Libro Verde individua sei settori di azione prioritari, per i quali la Commissione propone misure concrete al fine di attuare una politica energetica europea:

- L’energia per la crescita e per l’occupazione: completare il mercato interno dell’energia;
- Sicurezza dell’approvvigionamento: solidarietà tra Stati membri;
- Verso un mix energetico più sostenibile, efficiente e diversificato;
- L'UE in prima linea nella lotta contro il cambiamento climatico;
- La ricerca e l'innovazione al servizio della politica energetica europea;
- Verso una politica energetica esterna coerente.

I tre pilastri di cui sopra, declinati secondo le raccomandazioni del Libro Verde, hanno portato ad individuare una strategia comune di azione i cui cardini sono: la riduzione delle emissioni climateranti, l’incremento dell’efficienza energetica e lo sviluppo delle fonti rinnovabili. In tal senso il 23 gennaio 2008 la Commissione UE ha adottato il pacchetto di proposte “Climate action and renewable energy package” che intende condurre la UE entro il 2020 a:

- ridurre di almeno il 20% rispetto ai livelli del 1990 le emissioni di gas serra (impegno preso unilateramente dall’Unione Europea che si eleva al 30% in caso di accordo internazionale);
• ridurre del 20% i consumi finali di energia rispetto alle proiezioni al 2020 aumentando l’efficienza energetica;
• portare al 20% la quota delle fonti rinnovabili nei consumi finali di energia (e una quota di rinnovabili nei trasporti pari al 10%).

Il pacchetto legislativo, diventato formalmente vincolante con l’approvazione da parte del Consiglio Europeo il 6 aprile 2009, fissa, attraverso alcune importanti direttive e decisioni della Commissione Europea, obiettivi giuridicamente vincolanti per gli Stati Membri, da raggiungere secondo specifici piani d’azione nazionali. Questi gli obiettivi per l’Italia:

<table>
<thead>
<tr>
<th>Obiettivo</th>
<th>Italia</th>
<th>Riferimento normativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obiettivo per la quota di energia da fonti rinnovabili sul consumo finale di energia, 2020 (S_{2020})</td>
<td>17 %</td>
<td>Dir 2009/28/CE</td>
</tr>
<tr>
<td>Limiti delle emissioni di gas a effetto serra stabiliti per gli stati membri per il 2020 rispetto ai livelli di emissioni di gas ad effetto serra del 2005</td>
<td>-13 %</td>
<td>COD 406/2009/CE</td>
</tr>
<tr>
<td>Obiettivo per la quota di rinnovabili in tutte le forme di trasporto sul consumo finale di energia nel settore trasporti</td>
<td>10%</td>
<td>Dir 2009/28/CE</td>
</tr>
</tbody>
</table>

Tabella 1 - Schema degli obiettivi vincolanti per l’Italia derivanti da Direttive Europee.

Per quanto riguarda il tema del contenimento delle emissioni di gas climalteranti, già con la Direttiva 2003/87/CE (che modificava la Direttiva 96/61/CE del Consiglio) la Commissione Europea aveva istituito un sistema per lo scambio di quote di emissione dei gas a effetto serra (modificato successivamente con la
Direttiva 2009/29/CE che lo perfeziona ed estende), “al fine di promuovere la riduzione di dette emissioni secondo criteri di validità in termini di costi e di efficienza economica”.

In sintesi il sistema ETS (Emission Trading System) europeo è di tipo cap-and-trade, ovvero fissa un limite massimo (cap) per le emissioni di CO₂ generate dai circa 10.000 impianti industriali più energivori europei (di cui circa 1400 situati in Italia) che ricadono nel campo di applicazione della Direttiva, e che sono responsabili del 50% delle emissioni di CO₂ europee, lasciando agli operatori la libertà di scegliere se adempiere all’obbligo di riduzione delle proprie emissioni oppure acquistare da altri operatori (possessori di diritti in eccesso rispetto alle loro necessità) i diritti di emissione necessari per operare il proprio impianto. Attraverso il Piano Nazionale di Allocazione (PNA) ed in base all’ammontare nazionale stabilito dalla Direttiva UE, il governo di ciascun stato membro UE distribuisce e assegna ad ogni impianto nazionale un determinato numero di quote (diritti) di emissioni.

L’aggiornamento normativo disposto dalla Direttiva 2009/29/CE stabilisce:

- che “per ottemperare in maniera economicamente efficiente all’impegno di abbattere le emissioni di gas a effetto serra della Comunità di almeno il 20% rispetto ai livelli del 1990, le quote di emissione assegnate a tali impianti dovrebbero essere, nel 2020, inferiori del 21% rispetto ai livelli di emissione registrati per detti impianti nel 2005”;
- l’istituzione di un sistema di aste, dal 2013, per l’acquisto delle quote di emissione, i cui introiti andranno a finanziare misure di riduzione delle emissioni e di adattamento al cambiamento climatico;
- a decorrere dal 2013 un decremento annuo lineare pari all’1,74% (a partire dall’anno intermedio del periodo 2008-2012) per il quantitativo comunitario di quote rilasciate ogni anno dagli Stati Membri conformemente alle decisioni della Commissione sui loro Piani Nazionali di Assegnazione per il periodo 2008-2012.

Parallelamente all’azione regolatoria la Commissione Europea ha introdotto alcuni strumenti al fine di incoraggiare iniziative volte al contenimento delle emissioni di CO₂ da parte delle città e degli enti locali. Uno degli strumenti per la promozione degli obiettivi del “20-20-20” più sostenuti e diffusi dalla Commissione UE è il cosiddetto “Patto dei Sindaci (PdS)”. Questa iniziativa, su base volontaria, impegna le città europee a ridurre di oltre il 20% le proprie emissioni di gas serra al 2020 attraverso l’attuazione di un Piano di Azione per l’Energia Sostenibile (SEAP). I Comuni firmatari si impegnano in particolare a preparare un Inventario Base delle Emissioni (Baseline) come punto di partenza per il SEAP e a presentare piani di monitoraggio e valutazione delle azioni intraprese. Gli impegni assunti con la sottoscrizione del Patto dei Sindaci sono vincolanti. Ad oggi circa 4.800 comuni europei e 2.600 comuni italiani hanno aderito. Il Patto dei Sindaci costituisce il primo passo verso la creazione delle “Smart Communities”, ovvero di quei contesti territoriali nei quali sono affrontate congiuntamente tematiche socio-ambientali, quali mobilità, sicurezza, educazione e risparmio energetico, allo scopo di migliorare la qualità della vita all’interno della comunità.

Ai fini della promozione delle fonti energetiche rinnovabili ed in abrogazione della precedente Direttiva 2001/77/CE, nel 2009 la Commissione Europea ha pubblicato la Direttiva rinnovabili 2009/28/CE, la quale in sintesi:

- stabilisce uno stretto collegamento tra la produzione di energia da rinnovabili e l’efficienza energetica: agire sulla riduzione dei consumi finali facilita il raggiungimento dell’obiettivo sulle fonti rinnovabili;
- indica di promuovere il ricorso ai fondi strutturali per le rinnovabili e sostenere la fase di dimostrazione e commercializzazione delle tecnologie decentrate;
- stabilisce che gli Stati Membri realizzino piani d’azione nazionali per le rinnovabili al 2020 con base 2005;
- promuove un maggior ricorso a riserve di legno esistenti e allo sviluppo di nuovi sistemi di silvicoltura ai fini dello sfruttamento della biomassa da parte degli Stati Membri;
• rileva come l’azione pubblica sia necessaria per conseguire gli obiettivi comunitari relativi alla diffusione dell’elettricità verde;
• promuove la semplificazione delle procedure amministrative di approvazione degli impianti che utilizzano energia da fonti rinnovabili e l’adeguamento delle norme di pianificazione;
• incentiva la realizzazione di sistemi di teleriscaldamento e teleraffrescamento alimentati da fonti rinnovabili;
• stabilisce di attuare iniziative di formazione ed informazione.

A completare il quadro previsto dal “Climate action and renewable energy package”, che prevede un obiettivo di riduzione dei consumi energetici del 20%, sono le Direttive nel campo dell’efficienza energetica. La Commissione Europea già nel 2005 con il Libro Verde sull’efficienza energetica: fare di più con meno (COM(2005)265) aveva evidenziato come l’Europa dovesse affrontare sfide importanti nel settore dell’energia: dipendenza crescente dalle importazioni, volatilità del prezzo degli idrocarburi, cambiamento climatico, aumento della domanda e ostacoli sul mercato interno dell’energia. Con il Libro Verde la Commissione invitava gli Stati Membri ad attuare una politica energetica articolata su tre obiettivi principali:

• la sostenibilità ambientale, per lottare attivamente contro il cambiamento climatico, promuovendo le fonti di energia rinnovabili e l’efficienza energetica;
• la competitività, per migliorare l’efficacia della rete europea tramite la realizzazione del mercato interno dell’energia;
• la sicurezza dell’approvvigionamento, per coordinare meglio l’offerta e la domanda interne di energia dell’UE nel contesto internazionale.

Con una serie di Direttive la Commissione Europea ha inteso regolamentare ed aggiornare il quadro normativo sul tema dell’efficienza energetica, a partire dalla Direttiva 2002/91/CE sul rendimento energetico nell’edilizia (aggiornata dalla Direttiva 2010/31/UE), che definisce i requisiti energetici minimi per gli edifici di nuova costruzione e ristrutturati, introduce la certificazione energetica degli edifici, prescrive l’ispezione degli impianti di riscaldamento e condizionamento dell’aria e definisce gli “edifici ad energia quasi zero”. Con la Direttiva 2006/32/CE concernente l’efficienza degli usi finali dell’energia e i servizi energetici viene inoltre stabilito che gli Stati Membri debbano adottare, attraverso propri Piani d’Azione (PAEE), misure per il raggiungimento di un risparmio energetico globale pari al 9% entro il 2020. Con la Direttiva 2008/5/CE circa la normativa necessaria per una più efficiente gestione energetica, e la Direttiva 2009/29/CE che introduce misure finalizzate al miglioramento della competitività del settore industriale europeo attraverso la creazione di nuovi potenziali posti di lavoro. La più recente Direttiva 2012/27/UE, che abroga la precedente Direttiva 2006/32/CE, introduce ulteriori strumenti al fine di conseguire gli obiettivi di risparmio del 20% al 2020, tra cui nuove prescrizioni per le grandi imprese, per le imprese energetiche di pubblica utilità e stabilisce che gli Stati Membri si impegnino a garantire che l’uso di materiali di minor impatto ambientale sia favorito. Tale Direttiva completa di fatto il quadro, a livello normativo, per l’attuazione della terza parte del Pacchetto Clima-Energia. In particolare, nella previsione di regimi obbligatori sull’efficienza energetica per venditori e distributori di energia, gli Stati Membri devono raggiungere un obiettivo di risparmio energetico negli usi finali pari all’1,5% annuo entro il 31 dicembre 2020. Limitatamente ad una quota del 25% di tale obiettivo di risparmio, tra le altre misure, è prevista la possibilità di esentare dall’obbligo di efficienziamento annuo dell’1,5% la vendita di energia impiegata nei settori industriali elencati nell’Allegato I della Direttiva ETS.
Nel perseguire gli obiettivi delle proprie politiche energetiche ed ambientali, all'Europa va riconosciuto il primato di aver riportato la tecnologia al centro della politica energetica: il SET (Strategic Energy Technology) Plan, adottato dal Consiglio d’Europa nel Marzo 2008, individua delle priorità tecnologiche, delinea un percorso di sviluppo e impegna l’industria e la cooperazione europea su primi programmi congiunti.

Il grafico in Figura 2 illustra le potenzialità delle diverse tecnologie energetiche in termini di:
- orizzonte temporale per la introduzione della tecnologia (asse delle ascisse);
- difficoltà di implementazione della tecnologia (asse delle ordinate);
- contributo potenziale energetico della tecnologia (dimensione della torta);
- vantaggio derivante dall’applicazione del SET-Plan (frazione scura della torta).

La commissione UE individua tre fasi di sviluppo tecnologico al 2050: una fase a breve-medio termine (tecnologie esistenti o molto diffuse, specie in ambito edifici, trasporti e industria); la seconda fase con tempi medio-lunghi include tecnologie avanzate come solare, biocombustibili di seconda generazione e CCS (Carbon Capture and Storage), ma anche idrogeno e celle a combustibile nei trasporti, nucleare di IV generazione e tecnologie per lo sfruttamento dell’energia dagli oceani. La fusione è a lunghissimo termine.

La Commissione Europea ha redatto, nel marzo 2011, la Comunicazione “Roadmap for moving to a competitive low carbon economy in 2050” (“Tabella di marcia verso un’economia a competitiva a basse emissioni di carbonio al 2050”).

L’obiettivo dell’Unione Europea al 2050 è quello di ridurre le emissioni di gas climateranti rispetto ai livelli del 1990 attraverso il ricorso a tecnologie a ridotto impatto ambientale e ad alta efficienza. La ‘Roadmap’ prevede la riduzione delle emissioni dei gas climateranti secondo i seguenti obiettivi intermedi:
- - 20% entro il 2020;
- - 40% entro il 2030;
- - 60% entro il 2040;
- - 80% entro il 2050.

che dovrebbero essere conseguiti agendo sui principali settori responsabili delle emissioni climateranti, quali: la produzione di energia, l’industria, i trasporti, gli edifici e l’agricoltura.
La Commissione ha anche analizzato strategie per tali settori, considerando diversi tassi di innovazione tecnologia e differenti prezzi per i combustibili fossili. Le analisi effettuate convergono con gli obiettivi di riduzione delle emissioni previsti, ed in particolare prevedono un riduzione delle emissioni totali al 2030 tra il 40% ed il 44% e al 2050 tra il 79% e l’82%.

La ‘Roadmap’ specifica, inoltre, che per effettuare la transizione, l’Unione Europea dovrebbe prevedere investimenti consistenti, dell’ordine di 270.000 M€ o dell’1,5% del PIL all’anno, in media, per i prossimi 40 anni. Non provvedere per raggiungere gli obiettivi di ‘Roadmap’ sarebbe, però, molto più costoso nel lungo periodo. Investire in tecnologie verdi che riducono le emissioni inquinanti ha il vantaggio di rilanciare l’economia, creando posti di lavoro e rafforzando la competitività dell’Europa. Le famiglie e le imprese potranno godere di servizi energetici più efficienti e sicuri e di una qualità dell’aria migliore. Infatti, l’uso di tecnologie pulite e l’utilizzo di auto elettriche potrebbe ridurre drasticamente l’inquinamento delle città europee, abbattendo i costi per l’assistenza sanitaria e sulle apparecchiature per il controllo dell’inquinamento dell’aria. Entro il 2050, l’UE potrebbe risparmiare fino a € 88.000.000.000 all’anno in questi settori.

Sempre sul tema dell’efficienza energetica, l’Unione europea ha emanato la Direttiva 2009/125/CE che interessa tutte le apparecchiature che consumano energia, ovvero “ogni prodotto che, dopo l’immisione sul mercato e/o la messa in servizio, dipende da un input di energia (energia elettrica, combustibili fossili ed energie rinnovabili) per funzionare” e la Direttiva 2010/30/UE che introduce l’etichettatura energetica dei dispositivi.

Nell’aprile del 2013 la Commissione Europea ha presentato la Strategia Europea di Adattamento ai cambiamenti climatici, con lo scopo di supportare l’azione da parte degli Stati Membri, promuovere l’adattamento nei settori particolarmente vulnerabili, facendo sì che l’Europa possa contare su infrastrutture più resilienti e promuovendo l’uso delle assicurazioni per la tutela contro le catastrofi e assicurare processi decisionali informati. Tale strategia trova riscontro in Italia nella Strategia Nazionale di Adattamento ai Cambiamenti Climatici, approvata con decreto direttoriale n.86 del 16 giugno 2015 (si veda paragrafo successivo).

2.2. La normativa nazionale

A livello nazionale il recepimento delle Direttive Europee di cui al Capitolo 2.1 delinea un quadro normativo piuttosto articolato, che coinvolve aspetti autorizzativi, procedure e regimi di sostegno.

Per ciascuna area di intervento il PAN delinea le principali linee d’azione, evidenziando come le misure da attuare riguardino non solo la promozione delle fonti rinnovabili per usi termici e per i trasporti, ma anche lo sviluppo e la gestione della rete elettrica, l’ulteriore snellimento delle procedure autorizzative e lo sviluppo di progetti di cooperazione internazionale.

Il PAN contiene, inoltre, l’insieme delle misure (economiche, non economiche, di supporto e di cooperazione internazionale) necessarie per raggiungere gli obiettivi.

Relativamente alla semplificazione degli aspetti autorizzativi previsti dal PAN e in adempimento al Decreto Legislativo del 29 settembre 2003, n. 387, recante "Attuazione della Direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità, sono state approvate con il Decreto Ministeriale del 10 settembre 2010 le "Linee guida nazionali per l’autorizzazione degli impianti alimentati da fonti rinnovabili".
Le Linee Guida hanno l'obiettivo di definire modalità e criteri unitari sul territorio nazionale per le procedure autorizzative degli impianti alimentati da fonti rinnovabili al fine di assicurare uno sviluppo coerente delle infrastrutture energetiche.

Le Linee Guida definiscono i criteri e le modalità di inserimento degli impianti nel paesaggio e sul territorio e stabiliscono che le Regioni possono individuare eventuali aree non idonee all'installazione degli impianti parallellamente alla definizione di strumenti e modalità per il raggiungimento degli obiettivi previsti dall'Europa in materia di sviluppo delle fonti rinnovabili.

La Legge n. 116/2014 prevede un'ulteriore semplificazione alle procedure autorizzative per la realizzazione di interventi di efficienza energetica e di piccoli impianti a fonti rinnovabili introducendo un modello unico approvato dal Ministero dello Sviluppo Economico in sostituzione dei modelli eventualmente adottati dai Comuni, dai gestori di reti e dal GSE e specificando che l'installazione di impianti solari fotovoltaici e termici con particolari caratteristiche geometriche non è subordinata all'acquisizione di atti amministrativi di assenso.

Nel Marzo 2011 è stato inoltre pubblicato il D Lgs n. 28/2011 per l'attuazione della Direttiva 2009/28/CE: tale Decreto ha come obiettivo principale la definizione del quadro degli strumenti, inclusi i meccanismi incentivanti, e delle autorizzazioni ai fini del raggiungimento dell'obiettivo italiano sulle fonti rinnovabili. Il Decreto disciplina e riordina i regimi di sostegno applicati all'energia prodotta da fonti rinnovabili ed all'efficienza energetica e rimanda a successivi decreti per gli aspetti attuativi:

- Decreto 5 luglio 2012 “Attuazione dell’art. 25 del D Lgs 3 marzo 2011, n. 28, recante incentivazione della produzione di energia elettrica da impianti solari fotovoltaici” (c.d. Quinto Conto Energia);
- Decreto 6 luglio 2012 “Attuazione dell’art. 24 del D Lgs 3 marzo 2011, n. 28, recante incentivazione della produzione di energia elettrica da impianti a fonti rinnovabili diversi dai fotovoltaici”;

Il D Lgs n.28/2011 stabilisce poi, per le nuove costruzioni e gli edifici sottoposti a ristrutturazione rilevante, l’utilizzo di fonti rinnovabili a copertura di percentuali prefissate del fabbisogno complessivo di calore, elettricità e raffrescamento. Sul fronte della semplificazione delle procedure di accesso alla rete si evidenzia l’approvazione dei seguenti decreti:

- Decreto Ministero dello Sviluppo Economico 19 maggio 2015 “Approvazione del modello unico per la realizzazione, la connessione e l’esercizio di piccoli impianti fotovoltaici integrati sui tetti degli edifici”;
- Decreto Ministero dello Sviluppo Economico 16 marzo 2017 “Approvazione dei modelli unici per la realizzazione, la connessione e l’esercizio di impianti di microcogenerazione ad alto rendimento e di microcogenerazione alimentati da fonti rinnovabili”

Parallelamente alla semplificazione delle procedure amministrative per l’autorizzazione degli impianti e alla ridefinizione del quadro degli incentivi, è stata definita la ripartizione dell’obiettivo nazionale di sviluppo delle fonti rinnovabili (del 17%) tra le varie regioni italiane: il cosiddetto “Burden Sharing”.

Il Decreto del Ministero dello Sviluppo Economico 15 marzo 2012 recante “Definizione e qualificazione degli obiettivi regionali in materia di fonti rinnovabili e definizione delle modalità di gestione dei casi di mancato raggiungimento degli obiettivi da parte delle regioni e delle province autonome”, ripartisce
l’obiettivo nazionale di sviluppo delle fonti rinnovabili (17%) tra le varie regioni italiane, assegnando alla Liguria l’obiettivo finale del 14,1% e obiettivi intermedi biennali, come riportati in Tabella 2. L’obiettivo è dato dal rapporto tra i consumi finali da fonti rinnovabili ed i consumi finali lordi:

\[
\frac{\text{Consumo Finale da Fonti rinnovabili}}{\text{Consumo Finale Lordo}} = 14.1\%
\]

Per poter conseguire gli obiettivi del Decreto occorre quindi agire simultaneamente sul numeratore e denominatore, ovvero incrementando l’utilizzo delle fonti rinnovabili, ma anche riducendo i consumi finali lordi.

<table>
<thead>
<tr>
<th>Regioni e province autonome</th>
<th>Obiettivo regionale per l’anno [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>anno iniziale</td>
</tr>
<tr>
<td></td>
<td>di riferimento</td>
</tr>
<tr>
<td>Abruzzo</td>
<td>5,8</td>
</tr>
<tr>
<td>Basilicata</td>
<td>7,9</td>
</tr>
<tr>
<td>Calabria</td>
<td>8,7</td>
</tr>
<tr>
<td>Campania</td>
<td>4,2</td>
</tr>
<tr>
<td>Emilia Romagna</td>
<td>2,0</td>
</tr>
<tr>
<td>Friuli V. Giulia</td>
<td>5,2</td>
</tr>
<tr>
<td>Lazio</td>
<td>4,0</td>
</tr>
<tr>
<td>Liguria</td>
<td>3,4</td>
</tr>
<tr>
<td>Lombardia</td>
<td>4,9</td>
</tr>
<tr>
<td>Marche</td>
<td>2,6</td>
</tr>
<tr>
<td>Molise</td>
<td>10,8</td>
</tr>
<tr>
<td>Piemonte</td>
<td>9,2</td>
</tr>
<tr>
<td>Puglia</td>
<td>3,0</td>
</tr>
<tr>
<td>Sardegna</td>
<td>3,8</td>
</tr>
<tr>
<td>Sicilia</td>
<td>2,7</td>
</tr>
<tr>
<td>TAA – Bolzano</td>
<td>32,4</td>
</tr>
<tr>
<td>TAA – Trento</td>
<td>28,6</td>
</tr>
<tr>
<td>Toscana</td>
<td>6,2</td>
</tr>
<tr>
<td>Umbria</td>
<td>6,2</td>
</tr>
<tr>
<td>Valle D’Aosta</td>
<td>51,6</td>
</tr>
<tr>
<td>Veneto</td>
<td>3,4</td>
</tr>
<tr>
<td>Italia</td>
<td>5,3</td>
</tr>
</tbody>
</table>

Tabella 2 - Traiettoria degli obiettivi regionali del Burden Sharing.

2 Il DM 15 Marzo 2012 definisce il consumo finale lordo di energia di una Regione o Provincia autonoma come somma dei seguenti tre termini:
 a) consumi elettrici, compresi i consumi degli ausiliari di centrale, le perdite di rete e i consumi elettrici per trasporto;
 b) consumi di energia per riscaldamento e raffreddamento in tutti i settori, con esclusione del contributo dell’energia elettrica per usi termici;
 c) consumi per tutte le forme di trasporto, ad eccezione del trasporto elettrico e della navigazione internazionale.
È opportuno evidenziare come gli obiettivi del Decreto riportati in Tabella 2 siano da ritenersi vincolanti: l’art. 6 del Decreto Burden Sharing prevede infatti che a decorrere dal 2017 in caso di mancato conseguimento degli obiettivi si avvii la procedura di nomina di un commissario che consegua la quota di energia da fonti rinnovabili idonea a coprire il deficit riscontrato con oneri a carico della regione interessata (trasferimenti statistici di cui al D Lgs n. 28/2011).

L’obiettivo finale potrà essere conseguito promuovendo l’una piuttosto che l’altra fonte rinnovabile indifferendentemente, occorre tuttavia osservare che il Decreto riporta la ripartizione non vincolante dell’obiettivo in due contributi: uno legato alle fonti rinnovabili “elettriche” (FER-E) e l’altro legato alle fonti rinnovabili “termiche” (FER-C), in armonia con quanto stabilito dalla Direttiva Europea 2009/28/CE.

Tabella 3 - Obiettivi regionali del Burden Sharing distinti in fonti rinnovabili elettriche (FER-E) e termiche (FER-C)

*Include 50 ktep di biogas/biometano previsti dal PAN nel settore trasporti.

Occorre evidenziare che, secondo quanto riportato all’Art 2 del DM 15 Marzo 2012 il consumo di biocarburanti per trasporti non concorre alla determinazione della quota di energia da fonti rinnovabili da ripartire tra le regioni e le province autonome.

In particolare, secondo quanto riportato in Allegato 2, Capitolo 3 del DM 15 Marzo 2012, “con riferimento agli obiettivi di sviluppo previsti dal PAN, la ripartizione regionale delle FER prende in considerazione esclusivamente le FER-E e le FER-C”. Per le FER-T (consumi rinnovabili per i trasporti, con l’esclusione dell’energia elettrica, già conteggiata nelle FER-E) il perseguimento dell’obiettivo di sviluppo previsto dal
PAN\(^3\) è principalmente legato ai biocarburanti e “dipende in via quasi esclusiva dal graduale aggiornamento del meccanismo di sostegno nazionale, basato sull’obbligo di miscelazione di una quota minima di biocarburanti nella benzina e nel gasolio immessi al consumo”. Il DM Burden Sharing riconosce pertanto che (Allegato 1, Capitolo 3 del DM 15 Marzo 2012)”il raggiungimento di tale obiettivo dipende quasi esclusivamente da strumenti nella disponibilità dello Stato”.

L’azione pianificatoria regionale relativa a tale settore potrebbe pertanto attenersi principalmente alla riduzione dei consumi energetici attraverso misure ed interventi per i trasporti pubblici locali e di riduzione del traffico urbano (Art 4 del suddetto DM); tuttavia, come già ben evidenziato dal PEAR 2003, la funzione paese che la Liguria svolge in virtù del transito di merci e passeggeri che attraversa i suoi confini fa sì che le autorità regionali possano influire solo in parte sulla domanda e l’offerta di questi servizi, essendo queste funzione anche del quadro nazionale e transnazionale e delle relative evoluzioni e di scelte strategiche che travalcano gli ambiti regionali. Per questi motivi la Regione Liguria intende, nel presente Piano, concentrarsi su quei settori della produzione e del consumo di energia sui quali presenta un’influenza diretta, rimandando per il settore dei trasporti a quanto previsto dalle normative e strumenti di pianificazione nazionali ed europei ed implementando strumenti pianificatori dedicati in coerenza con le suddette normative.

Nel 2013 si è inoltre conclusa la fase di consultazione della Strategia Energetica Nazionale (SEN)\(^4\), che si pone i seguenti obiettivi al 2020:

- significativa riduzione dei costi energetici e progressivo allineamento dei prezzi all’ingrosso ai livelli europei;
- superamento di tutti gli obiettivi ambientali europei al 2020;
- maggiore sicurezza, minore dipendenza di approvvigionamento e maggiore flessibilità del sistema;
- impatto positivo sulla crescita economica grazie ai circa 170-180 miliardi di euro di investimenti (privati, solo in parte supportati da incentivi) da qui al 2020, sia nella green e white economy (rinnovabili ed efficienza energetica), che nei settori tradizionali (reti elettriche e gas, rigassificatori, stocchi, sviluppo idrocarburi).

Per il raggiungimento di questi risultati la strategia si articola in sette priorità:

- la promozione dell’efficienza energetica;
- la promozione di un mercato del gas competitivo, integrato con l’Europa e con prezzi ad essa allineati e con l’opportunità di diventare il principale Hub sud-europeo;
- lo sviluppo sostenibile delle energie rinnovabili;
- lo sviluppo di un mercato elettrico pienamente integrato con quello europeo;
- la ristrutturazione del settore della raffinazione e della rete di distribuzione dei carburanti, verso un assetto più sostenibile e con livelli europei di competitività e qualità del servizio;
- lo sviluppo sostenibile della produzione nazionale di idrocarburi, con importanti benefici economici e di occupazione e nel rispetto dei più elevati standard internazionali in termini di sicurezza e tutela ambientale;
- la modernizzazione del sistema di governance del settore, con l’obiettivo di rendere più efficaci e più efficienti i processi decisionali.

Oltre a queste priorità la SEN propone azioni relative alle attività di ricerca e sviluppo tecnologico, funzionali in particolare allo sviluppo dell’efficienza energetica, delle fonti rinnovabili e all’uso sostenibile di combustibili fossili.

Anche per quanto riguarda il tema dell’efficienza energetica l’Italia si è dotata di strumenti programmatori specifici quali il Piano d’Azione per l’Efficienza Energetica 2011, che stabilisce, secondo quanto previsto dalla la Direttiva 2006/32/CE, un obiettivo nazionale indicativo globale di risparmio energetico al 2016 pari

\(^3\) Derivante dalla Direttiva 2009/28/CE che stabilisce che “Ogni Stato Membro assicura che la propria quota di energia da fonti rinnovabili in tutte le forme di trasporto nel 2020 sia almeno pari al 10% del consumo finale di energia nel settore dei trasporti dello Stato Membro”.

Tramite la Legge n. 232/2016 (Legge di bilancio 2017) è stata poi prorogata la detrazione del 50% per le ristrutturazioni edilizie sino al 31 dicembre 2017. L’Italia ha completato il recepimento della Direttiva 2010/31/UE attraverso la pubblicazione dei tre DM 26/06/2015. In particolare, il DM 26/06/2015 “Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici” aggiornata ed integra il quadro normativo vigente a livello nazionale nell’ambito dell’efficienza energetica nel settore edilizio, definendo nuovi e più restrittivi requisiti per gli edifici di nuova costruzione (edifici a energia quasi zero NZEB) e per quelli sottoposti a riqualificazione energetica e a ristrutturazione importante.

Per quanto riguarda la certificazione energetica degli edifici, il DM 26/06/2015 “Adeguamento delle Linee Guida Nazionali per la certificazione energetica degli edifici” introduce un nuovo modello di attestato ed integra le valutazioni energetiche per la definizione della classe di appartenenza con i contributi dovuti alla climatizzazione estiva, all’illuminazione ed ai trasporti per il settore non residenziale.

Ai fini dell’applicazione delle prescrizioni e dei requisiti minimi di prestazione energetica negli edifici, il DM 26/06/2015 “Schemi e modalità di riferimento per la compilazione della relazione tecnica di progetto ai fini
dell’applicazione delle prescrizioni e dei requisiti minimi di prestazione energetica negli edifici” aggiorna il modello della relazione di progetto ed i parametri in essa contenuti.

Il Decreto 16 febbraio 2016 “Aggiornamento della disciplina per l’incentivazione di interventi di piccole dimensioni per l’incremento dell’efficienza energetica e per la produzione di energia termica da fonti rinnovabili” (Conto Termico 2.0), potenzi e semplifica i meccanismi di incentivazione previsti dal Decreto 28 dicembre 2012.

I beneficiari del nuovo sistema di incentivi sono le Pubbliche Amministrazioni (PA), le imprese ed i privati che possono accedere a fondi fino a 900 milioni di euro annui, di cui 200 destinati alla PA.

Il Conto Termico 2.0, entrato in vigore dal 31 maggio 2016, introduce tra gli interventi agevolabili per le PA, la sostituzione dei sistemi di illuminazione con sistemi più efficienti, la trasformazione degli edifici esistenti in NZEB, l’installazione di tecnologie di gestione e controllo automatico degli impianti termici ed elettrici e di sistemi di termoregolazione e contabilizzazione del calore. Inoltre, definisce nuove procedure semplificate per la richiesta delle agevolazioni e percentuali di incentivo maggiori rispetto a quelle indicate nel precedente Decreto 28 dicembre 2012.

In particolare il Conto termico 2.0 prevede incentivi che possono arrivare fino al 65% della spesa sostenuta per la realizzazione di edifici a energia quasi zero (NZE) ed al 40% della spesa per interventi di isolamento di muri, coperture e sostituzione di elementi finestrati. Tale percentuale sale al 55% per le zone climatiche E ed F ed al 55% se l’isolamento termico è abbinato ad interventi sull’impianto termico.

I Decreti Ministeriali del 20 luglio 2004, elettricità e gas, istituiscono i Titoli di Efficienza Energetica (TEE) o Certificati Bianchi che sono titoli negoziabili che certificano il conseguimento di risparmi energetici negli usi finali di energia attraverso interventi e progetti di incremento di efficienza energetica. I Decreti Ministeriali del 20 luglio 2004 prevedono che i distributori di energia elettrica e di gas naturale (soggetti obbligati) raggiungano annualmente determinati obiettivi quantitativi di risparmio di energia primaria. In particolare, i soggetti obbligati possono scegliere se fare interventi di efficienza che permettano loro di acquisire, tramite il GSE, dei TEE oppure se acquistarli da soggetti terzi sul mercato dei TEE. Il DM 5 settembre 2011 permette agli impianti di Cogenerazione ad Alto Rendimento (CAR) di accedere al sistema dei Certificati Bianchi. Il DM 28 dicembre 2012 definisce gli obiettivi quantitativi nazionali di risparmio energetico per le imprese di distribuzione di energia elettrica e gas per gli anni dal 2013 al 2016 ed introduce nuovi soggetti ammessi alla presentazione di progetti per il rilascio dei Certificati Bianchi, quali imprese di distribuzione con più di 50.000 clienti finali (in precedenza i soggetti obbligati dovevano avere più di 100.000 clienti finali), le società controllate da tali imprese, i distributori non obbligati, le società operanti nel settore dei servizi energetici, le imprese e gli enti che si dotino di un energy manager o di un sistema di gestione dell’energia in conformità alla norma ISO 50001.

Tramite il Decreto 11 gennaio 2017, entrato in vigore dal 4 aprile 2017, sono stati definiti i nuovi obiettivi nazionali di risparmio energetico per il periodo 2017-2020 e sono stati aggiornati i criteri e le modalità di realizzazione dei progetti di efficienza energetica per l’accesso ai meccanismi dei certificati bianchi.

Con il D Lgs 13 marzo 2013, n. 30 viene attuata la Direttiva 2009/29/CE che modifica la Direttiva 2003/87/CE al fine di perfezionare ed estendere il sistema comunitario per lo scambio di quote di

Tramite il D Lgs n. 15 del 2011 ed al D Lgs n. 104 del 2012 lo Stato Italiano ha recepito le Direttiva 2009/125/CE e la 2010/30/UE in tema efficienza prodotti connessi all'energia e all’etichettatura energetica degli stessi.

Conseguentemente alla presentazione della Strategia Europea di Adattamento ai cambiamenti climatici l’Italia ha elaborato la Strategia Nazionale di Adattamento ai Cambiamenti Climatici (SNAC), approvata con il decreto direttoriale n.86 del 16 giugno 2015, che individua i principali impatti dei cambiamenti climatici per una serie di settori socio-economici e naturali e propone azioni di adattamento.

Con riferimento al settore di azione “Energia” la strategia propone azioni di tipo soft o non strutturale e azioni di tipo grigio, o strutturale.

Azioni di tipo soft

Gestione della domanda di energia per riscaldamento e raffrescamento:

- realizzare interventi di adattamento, sistematici e generalizzati, del comparto edilizio nazionale atti alla riduzione dei fabbisogni di climatizzazione per la stagione invernale e, soprattutto, per quella estiva;
- prescrivere, tramite i Regolamenti Edilizi Comunali, che gli edifici di nuova realizzazione siano “climate proof”

Gestione della trasmissione e della distribuzione di energia elettrica:

- promuovere lo sviluppo di microgrid;
- promuovere i programmi di orientamento della domanda (“demand response programmes”)

Incremento della resilienza del sistema energetico:

- diversificare le fonti primarie;
- promuovere le fonti rinnovabili e l’efficienza energetica;

- Demand side management, ovvero modificare la domanda dei consumatori di energia attraverso vari metodi quali incentivi finanziari e campagne educative;

- utilizzare sistemi di stoccaggio dell’energia,
- integrare e sviluppare le reti,
- utilizzare contratti che prevedano l’interrompibilità del servizio;

- sostenere l’evoluzione in corso da un sistema centralizzato a uno distribuito

Ruolo del sistema assicurativo:

- promuovere per i gestori di impianti, in particolare quelli come le centrali termoelettriche che richiedono investimenti elevati, la gestione dei rischi attraverso l’apertura di un conto assicurativo

Azioni per la produzione da fonti rinnovabili – Energia idroelettrica

- supportare gli accordi e le azioni concertate tra i soggetti interessati nella gestione delle acque e degli invasi (autorità di bacino, agricoltori e produttori stessi) attraverso strumenti modellistici;

- sviluppare programmi di incentivazione economica per lo sviluppo di nuova capacità di stoccaggi, nel rispetto del principio della gerarchia dell’acqua (prima si incide sulla domanda e ove necessario anche sulla disponibilità) data la scarsità di nuovi siti economicamente ed ambientalmente sostenibili;

- conservare, nella gestione ordinaria, maggiori volumi di acqua nei serbatoi di stoccaggio per far fronte alla crescente variabilità delle precipitazioni e, di conseguenza, delle disponibilità idriche.

Azioni di tipo grigio:

Gestione della domanda di energia per riscaldamento e raffrescamento:
• realizzare interventi di adattamento, sistematici e generalizzati, del comparto edilizio nazionale atti alla riduzione dei faibisogni di climatizzazione per la stagione invernale e, soprattutto, per quella estiva;
• prescrivere, tramite i Regolamenti Edilizi Comunali, che gli edifici di nuova realizzazione siano “climate proof”
Gestione della trasmissione e della distribuzione di energia elettrica:
• promuovere lo sviluppo di microgrid;
• promuovere i programmi di orientamento della domanda (“demand response programmes”)
Incremento della resilienza del sistema energetico:
• diversificare le fonti primarie;
• promuovere le fonti rinnovabili e l’efficienza energetica;
• Demand side management, ovvero modificare la domanda dei consumatori di energia attraverso vari metodi quali incentivi finanziari e campagne educative;
• utilizzare sistemi di stoccaggio dell’energia,
• integrare e sviluppare le reti,
• utilizzare contratti che prevedano l’interrompibilità del servizio;
• sostenere l’evoluzione in corso da un sistema centralizzato a uno distribuito

Azioni per la produzione da fonti rinnovabili:
• aumentare la disponibilità di sistemi di monitoraggio meteo che permettano di conoscere tempestivamente l’andamento dell’offerta di energia idroelettrica e che forniscono informazioni utili a tutti i gestori delle risorse idriche;
• rafforzare il controllo/monitoraggio della variabilità dell’apporto d’acqua lungo l’arco dell’anno al fine di tutelare le condizioni ecologiche del corso d’acqua ed evitare i conflitti legati agli altri usi della risorsa, in particolare quelli agricoli

Azioni per la produzione da fonti rinnovabili – Energia idroelettrica:
• supportare gli accordi e le azioni concertate tra i soggetti interessati nella gestione delle acque e degli invasi (autorità di bacino, agricoltori e produttori stessi) attraverso strumenti modellistici;
• aumentare i volumi dei serbatoi di stoccaggio nella gestione ordinaria per far fronte alla crescente variabilità delle precipitazioni e, di conseguenza, delle disponibilità idriche, nel rispetto del principio della gerarchia dell’acqua (si agisce prioritariamente sulla riduzione della domanda e, ove necessario, anche per aumentare l’offerta di risorsa).

Azioni per la produzione da fonti rinnovabili – Energia da biomassa
• investire in sistemi di raffreddamento più efficaci in fase di progettazione degli impianti a biomassa

Si evidenzia che a maggio 2016 è stata avviata l’elaborazione del Piano Nazionale di Adattamento ai cambiamenti Climatici (PNACC) per dare impulso all’attuazione della SNAC.

2.3. La normativa regionale

La Liguria si è dotata con la DCR n. 43 del 2 dicembre 2003 di un Piano Energetico Ambientale Regionale (P.E.A.R.) approvato dal Consiglio regionale che definiva, nel rispetto degli obiettivi del Protocollo di Kyoto e in accordo con la pianificazione regionale in materia di inquinamento atmosferico, i seguenti tre obiettivi generali al 2010:
1.aumento dell’efficienza energetica;
2.raggiungimento del 7% del fabbisogno energetico da fonti rinnovabili;
3.stabilizzazione delle emissioni climalteranti ai livelli dell’anno 1990.
Il Piano declinava inoltre tali obiettivi generali secondo indirizzi specifici per i vari settori: per quanto riguarda l’efficienza energetica si ipotizzava di conseguire un risparmio energetico nel settore civile pari al 10%, mentre per le fonti rinnovabili si definivano obiettivi specifici per fonte. Per il dettaglio degli obiettivi per fonte energetica ed il loro stato di raggiungimento si rimanda al Capitolo 4.

Con la Delibera del Consiglio Regionale n. 3/2009 la Regione ha successivamente aggiornato l’obiettivo specifico del PEAR per l’eolico portandolo dagli 8 MW di potenza installata individuati originalmente come obiettivo di sviluppo, a 120 MW. La Regione ha inoltre individuato le aree considerate non idonee per l’installazione dell’eolico.

In particolare si fa riferimento alla modifica della LR n. 16/2008 “Disciplina dell’attività edilizia” per quanto attiene alla semplificazione dei titoli autorizzativi relativi agli impianti da fonti rinnovabili e alle “Linee Guida per l’autorizzazione, la valutazione ambientale, la realizzazione e la gestione di impianti per lo sfruttamento delle fonti energetiche rinnovabili” (approvate con DGR n. 1122 del 21/9/2012), che contengono i criteri di ammissibilità territoriale, paesistica ed ambientale ed i contenuti progettuali necessari per lo svolgimento delle prescritte valutazioni ambientali e di livello autorizzativo.

Con la LR n. 22/2007 “Norme in materia di energia” (aggiornata con LR n. 23/2012) e relativi regolamenti attuativi la Regione ha aggiornato il quadro normativo e dei regolamenti per quanto attiene il rendimento energetico degli edifici, la certificazione energetica ed i requisiti minimi ed ha inoltre stabilito disposizioni per il contenimento luminoso (attuate attraverso il Regolamento Regionale n. 5/2009).

Durante la fase di avvio, la Regione Liguria ha gestito il processo di certificazione degli edifici istituendo l’elenco dei certificatori liguri, definendone i criteri di accesso e regolamentando i corsi di formazione tenuti dagli enti formativi autorizzati. Nel 2009 inoltre è stato istituito il sistema informativo per la trasmissione degli attestati energetici in formato digitale, che ha costituito la prima fase della creazione della banca dati regionale.

Per allinearsi a quanto previsto dalla Direttiva 2010/31/UE sull’efficienza energetica, che introduce criteri più restrittivi rispetto alle precedenti, la Regione ha modificato ed integrato la LR n. 22/2007 attraverso la pubblicazione della LR n. 23/2012 e del suo Regolamento attuativo n. 6/2012, anticipando l’entrata in vigore degli aggiornamenti recentemente effettuati a livello nazionale con la Legge n. 90/2013.

La LR n. 23/2007 ridefinisce gli ambiti e le modalità di applicazione dei requisiti minimi per le nuove costruzioni e per gli edifici esistenti sottoposti a ristrutturazione integrale o parziale ed integra le azioni che intervengono nel processo di certificazione energetica, rimandando al Regolamento per gli aspetti attuativi. Il suddetto percorso normativo ha consentito la formazione di nuove professionalità (quali ad es. la figura del certificatore energetico), l’introduzione di più stringenti requisiti minimi prestazionali e portato ad una
maggiore consapevolezza delle performance energetiche delle abitazioni ed in generale del patrimonio edilizio regionale da parte degli utenti.

In particolare, il processo di certificazione energetica, rispetto al quale la Liguria si è posta all’avanguardia nel panorama nazionale, ha innescato una serie di meccanismi destinati ad incidere profondamente sulla percezione dell’importanza dell’efficienza energetica da parte del cittadino e sulla necessità da parte del professionista di integrare i criteri legati al contenimento del consumo energetico nella progettazione e realizzazione del sistema edificio-impianto.

Tramite DGR n. 447/2014, la Regione Liguria ha recentemente recepito il DPR n. 75/2013 in tema di criteri e requisiti per l’esercizio dell’attività di certificazione energetica degli edifici, dei requisiti degli organismi formativi erogatori dei corsi e dei corsi di formazione per certificatore energetico.

Inoltre Regione Liguria ha pubblicato la LR n. 32/2016, che ha modificato la LR n. 22/2007 al fine del recepimento dei DM 26/06/2015.

Attraverso l’entrata in vigore della LR n. 32/2016 la Regione ha completato il recepimento della Direttiva 2010/31/UE, aggiornando i requisiti minimi per le nuove costruzioni e per gli edifici sottoposti a riqualificazione o ristrutturazione importante ed integrando nella valutazione della classe energetica i contributi dovuti alla climatizzazione estiva, all’illuminazione ed ai trasporti per il settore non residenziale.

In particolare la Regione ha recepito sia gli standard “NZEB” previsti per gli edifici di nuova costruzione, sia i requisiti e gli ambiti di applicazione che devono essere applicati per edifici esistenti sottoposti ad interventi di efficienza energetica, al fine del raggiungimento degli obbiettivi comunitari di riduzione dei consumi nel settore edilizio.

Infine con la DGR n. 1673/2014 la Regione Liguria ha recepito il DPR n. 74/2013, definendo le disposizioni per l’esercizio, il controllo, la manutenzione e l’ispezione degli impianti termici ed istituendo il Catasto degli Impianti Termici (CAITEL).
3. Il contesto d’azione del Piano

Al fine di stabilire gli obiettivi della pianificazione energetica regionale al 2020, dopo aver analizzato il quadro delle norme e degli obblighi da esse stabiliti, occorre delineare il quadro conoscitivo del territorio regionale in termini di inquadramento territoriale e di cause antropiche che ne caratterizzano le principali dinamiche: demografica e socio-economica.

3.1. L’inquadramento territoriale

La Liguria occupa un arco di terra nella zona costiera dell’Italia settentrionale, compreso tra il Mar Ligure e le montagne che segnano l’incontro tra le Alpi e l’Appennino. Il territorio regionale ha un’estensione di 5.416 km², pari all’1,8% del territorio nazionale: il 65% (3.520 km²) è qualificato come montagna mentre il restante 35% è identificato come collina (1.896 km²); la costa, generalmente alta con frequenti falesie, si estende per una lunghezza di circa 336 km. I corsi d’acqua sono per la maggior parte a regime torrentizio orientati perpendicolarmente da Nord a Sud. I fiumi maggiori sono situati all’estremità della regione e scorrono solo parzialmente all’interno di questa: a ponente il Roia lungo 58 km con un bacino imbrifero di 550 km²; a levante il Magra lungo 62 km con un bacino imbrifero di 1.655 km². La Liguria è la Regione italiana a più elevato indice di boscosità: i boschi ricoprono una superficie di circa 375.000 ettari con un indice, espresso in rapporto con la superficie totale, pari al 69% contro il 34% della media nazionale (dati dell’Inventario nazionale delle foreste e dei serbatoi di carbonio - INFC 2007). I boschi alti (cerrete, faggete, castagneti e pinete ad esempio) occupano l’84,4% della superficie forestale totale, gli arbusteti il 7,4%, le formazioni riparie il 3,3% e le boscaglie pioniere o di invasione il 4,9%. Quest’ultimo dato evidenzia la progressiva occupazione del bosco negli ex coltivi abbandonati, che determina la costante crescita della superficie forestale regionale. La Liguria, essendo esposta prevalentemente a Sud, gode del clima mite mediterraneo marittimo, con escursioni annue intorno ai 15 gradi, medie invernali intorno ai 10 gradi ed estati con valori intorno ai 24 gradi. Il clima varia spostandosi dalla costa verso l’interno: per i due terzi del territorio che affacciano a mezzogiorno è quello mediterraneo marittimo, sui rilievi le condizioni sono tanto meno favorevoli quanto più aumenta l’altitudine. Il territorio sul versante settentrionale padano, infine, risente negativamente del clima della pianura. La complessa orografia influenza il clima provocando variazioni nella direzione e velocità del vento favorendo l’instaurarsi di fenomeni anemologici a scala locale. Così nei punti più interni del golfo di Genova alcune giornate invernali possono risultare particolarmente rigide a causa dei venti freddi provenienti dai valichi appenninici.

Dal punto di vista amministrativo il territorio è suddiviso in 235 comuni e quattro province: Genova, capoluogo di regione che, posto quasi al centro della regione la divide in due parti: la Riviera di ponente e quella di levante; Imperia; Savona e La Spezia.

Dei 235 comuni liguri, 125 appartengono alle zone collinari e 110 alla fascia montana. Ben 85 sono i comuni che si trovano in una fascia d’altitudine inferiore ai 110 m, mentre 81 si collocano in una fascia che va dai 200 ai 500 m; solo un comune (S. Stefano d’Aveto) supera i 1.000 m d’altezza. La provincia di Genova è quella che presenta maggiori caratteristiche di montagna (83% del territorio) mentre quella di La Spezia è la più collinare (61% della superficie).

5 Fonti: Piano di risanamento e tutela qualità dell’aria; Piano Energetico Ambientale Regionale 2003; Rapporto sullo stato delle foreste in Liguria 2010.
6 La Città Metropolitana di Genova, istituita dalla legge "Delrio", n. 56 del 2014, sostituisce a partire dal 1º gennaio 2015 la Provincia di Genova.
3.2. La popolazione

Riportando il tutto ad un’analisi pluriennale occorre notare che, dopo il forte decremento del trentennio 1971/2001 (-282.000 abitanti) la popolazione nel decennio successivo (2001-2011) è rimasta sostanzialmente costante, sebbene nel corso degli anni di riferimento abbia subito delle fluttuazioni anche significative.

Tale variazione non è uniforme per tutte le classi di età ma tende ad essere più accentuata tra i più anziani (80 anni e oltre) per i quali la variazione percentuale è stata del +31,7%. Viceversa la classe in cui si riscontrano le maggiori variazioni negative è quella da 15 a 39 anni (-17,1%).

La Liguria è la regione italiana che presenta il maggiore equilibrio fra generazioni: si contano 238 anziani (persone con 65 anni e più) ogni 100 giovani (persone con meno di 15 anni) contro i 190 del Friuli Venezia Giulia, che è la seconda regione più vecchia d’Italia, e oltre il doppio della Campania (102), che è la regione più giovane d’Italia.

La densità abitativa risulta pari a 289,7 abitanti per km²: tale dato è fra i più alti d’Italia, preceduto solo da quelli di Campania, Lombardia e Lazio. Questo indicatore, che misura la pressione antropica esercitata sul territorio, è particolarmente elevato nella provincia di Genova (465,5), per effetto della presenza della città di Genova e del suo hinterland, e nei comuni costieri. Più della metà della popolazione residente si concentra nella Città Metropolitana di Genova (54,5%), mentre la restante parte si distribuisce nelle province di Savona (17,9%), La Spezia (14,0%) e Imperia (13,7%); nella città di Genova risiedono 586.180 persone, il 37,3% della popolazione ligure; 46 comuni risultano avere popolazione inferiore ai 500 abitanti.

I principali indicatori demografici relativi all’anno 2012 non si discostano da quelli inerenti all’anno precedente. Dall’analisi della componente naturale il tasso di natalità è pari a 7,4 nati per mille abitanti, mentre il tasso di mortalità è pari a 13,9 morti per mille abitanti. Il numero dei decessi, pari a 21.736 rispetto a 11.583 nati vivi, conferma il saldo naturale negativo che viene contrastato dall’effetto positivo della componente migratoria, che risulta pari a 7.941 unità7.

<table>
<thead>
<tr>
<th>Anni</th>
<th>Tasso di natalità</th>
<th>Tasso di mortalità</th>
<th>Indice di vecchiaia</th>
<th>Indice di dipendenza</th>
<th>Tassi nuzialità</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>7,9</td>
<td>13,8</td>
<td>236,1</td>
<td>61,6</td>
<td>4,0</td>
</tr>
<tr>
<td>2009</td>
<td>7,8</td>
<td>13,8</td>
<td>234,6</td>
<td>61,9</td>
<td>3,6</td>
</tr>
<tr>
<td>2010</td>
<td>7,6</td>
<td>13,6</td>
<td>232,0</td>
<td>61,8</td>
<td>3,4</td>
</tr>
<tr>
<td>2011</td>
<td>7,3</td>
<td>13,7</td>
<td>236,2</td>
<td>63,7</td>
<td>3,3</td>
</tr>
<tr>
<td>2012</td>
<td>7,4</td>
<td>13,9</td>
<td>238,2</td>
<td>64,7</td>
<td>3,4</td>
</tr>
</tbody>
</table>

Tabella 4 - Principali indicatori demografici (per mille abitanti) – Anni 2008 - 2012

Gli indicatori di struttura della popolazione confermano il fenomeno dell’invecchiamento della popolazione ligure; l’indice di dipendenza degli anziani, ossia il rapporto tra gli oltre sessantacinquenni e la fascia di popolazione in età lavorativa da 15 a 64 anni, cresce rispetto all’anno precedente ed è pari a 45,6% così come l’indice di vecchiaia (rapporto percentuale tra il numero degli ultra sessantacinquenni ed il numero dei giovani fino ai 14 anni) che passa da 236,2 del 2011 a 238,2 nel 2012.

7 Derivante dalla differenza tra iscrizioni e cancellazioni anagrafiche conseguenti a trasferimenti di residenza e ad altri movimenti anagrafici.
La cala pari complessiva carico straniera è del 11,55% gli anni. 48,4% le entrare complessiva 65.994 rappresenta mamme stranieri 3,3. Il sistema economico ligure attesta un indice del totale) di 35,3, coniugati/e, femmine di lavoro del 1° trimestre 66.452 popolazione. La popolazione residente della fascia di età tra 15 e 20 anni è di 13.565 di 2011 e 2012 del 18,7% del 2012 e stima il carico dei figli in età prescolare per le mamme lavoratrici. La popolazione residente per stato civile è composta per il 38,2% da celibi/nubili, 48,4% coniugati/e, 3,6% divorziati/e e 9,8% vedovi/e.

Nell’anno 2012 sono stati celebrati in totale 5.324 matrimoni di cui il 41,3% con rito civile e la restante percentuale pari a 2.198 matrimoni con rito religioso. L’età media dello sposo al primo matrimonio risulta pari a 35,3, mentre per le spose si attesta a 32,1; tali valori non si discostano da quelli registrati negli ultimi anni.

Gli stranieri residenti in Liguria al 31 dicembre 2012 sono 119.946, pari all’8% della popolazione residente complessiva e registrano una crescita rispetto all’anno precedente del 7,1%. La componente femminile è di 65.994 femmine contro 53.952 maschi. Anche la popolazione minorenne straniera rispetto a quella complessiva residente in Liguria cresce e in percentuale si attesta al 12%. Dall’analisi della popolazione straniera per classe di età si evidenzia che sia tra i maschi che tra le femmine la maggiore percentuale (11,55% totale) è presente nella fascia di età 30-34 anni.

3.3. Il sistema economico ligure

Le previsioni di livello nazionale e quelle regionali (contenute nel Documento di Programmazione Economico – Finanziaria della Regione Liguria - DPEFR 2014 - 2016 approvato con Delibera del Consiglio

8 Rappresenta il rapporto percentuale tra la fascia di popolazione che sta per andare in pensione (60-64 anni) e quella che sta per entrare nel mondo del lavoro (15-19 anni).
Regionale n. 31 del 26/11/2013 indicano, dopo un periodo di decremento del PIL nazionale (-1,7% per l’anno 2013), una inversione che porterà ad un segno positivo nel 2014 (Tabella 5).

Tabella 5 - Previsioni macroeconomiche del Governo 2013-2017 (variazioni %).
Fonte: Prometeia aggiornamento luglio 2013.

L’analisi della dinamica del PIL ligure (Tabella 6) evidenzia una situazione di sofferenza strutturale in coerenza con l’andamento tendenziale dell’aggregato nazionale, ma che, in termini di risultati, emerge amplificata negli effetti e nelle difficoltà a invertire la progressiva decrescita. L’analisi congiunturale registra nel 2012 una significativa contrazione della crescita economica della Liguria (-2,51%) che rispecchia in particolare le forti difficoltà in tutte le componenti della domanda interna che complessivamente si attesta intorno a -4,5%. La spesa per consumi delle famiglie è fortemente ridotta (-4,16%) rispetto all’anno precedente, gli investimenti fissi lordi hanno registrato un calo significativo (-8,14%) e la spesa per consumi del settore pubblico ha accentuato il suo percorso di contenimento per attestarsi in media d’anno attorno al -4,5%.
Le difficoltà economiche affrontate dalle famiglie liguri deprimeranno ancora la spesa per tutto il 2014 che in media d’anno registrerà un decremento dei consumi delle famiglie dello 0,4%; a partire dal 2015 si potranno registrare timidi segni di ripresa seppur sempre inferiori all’aggregato nazionale.

Un andamento simile verrà registrato dagli investimenti delle imprese che mostreranno dapprima un’inversione di tendenza con una lieve ripresa (+0,9 nel 2014) e poi un po’ più consistente seppure sempre con tassi di crescita ben inferiori sia a quello del comparto territoriale che nazionale.

Tabella 6 - Indicatori economici dell’economia ligure anni 2001 - 2012 (valori assoluti in milioni di euro; valori ai prezzi concatenati anno di riferimento 2005).

Le imprese attive in Liguria hanno registrato, nel periodo 2010-2012, un decremento (-0,5%) comunque di entità inferiore rispetto a quella rilevata a livello nazionale (-0,8%). Il 47,7% delle imprese regionali appartiene ai settori di commercio e costruzioni, il 9,7% si riferisce alle attività di alloggio e ristorazione e solo il 7,7% delle imprese rientra nel comparto manifatturiero. Il calo delle imprese attive interessa in particolare il settore manifatturiero (-3,7%), il commercio (-1,4%), le attività di trasporto e magazzinaggio (-4,4%) ed i servizi di informazione e comunicazione (-1,6%). Da dati ed elaborazioni Banca d’Italia, ISTAT, Confindustria Liguria e Liguria Ricerche SpA relative al II semestre 2013, i fattori critici dell’economia ligure risultano:

- perdurante debolezza della domanda interna;
- basso livello degli ordini nell’industria manifatturiera (analogamente al 2012);
- forte calo della produzione di materiali per le costruzioni;
- traffico portuale in calo: merci -5,5%, container -3,0%;
- occupazione in calo rispetto allo stesso periodo di osservazione del 2012 (-3,2%, variazione superiore a Nord Ovest e Italia);
- disoccupazione in aumento (+2,2% rispetto al 2012/II trimestre, portando il totale al 10,2%), ma inferiore alla media nazionale;
- turismo: arrivi +0,4%, presenze -2,6%. Relativamente ai soli turisti stranieri si ha un aumento sia per gli arrivi (+15,6%) che nelle presenze (+15,2%);
- diminuzione complessiva dell’esport (-25,4%) sebbene si registrino aumenti significativi verso alcune destinzioni non UE.

<table>
<thead>
<tr>
<th>Scenario di previsione al 2016 per la Liguria</th>
</tr>
</thead>
<tbody>
<tr>
<td>(tassi di variazione % su valori a prezzi concatenati con anno di riferimento 2005)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Prodotto Interno Lordo</td>
</tr>
<tr>
<td>Domanda interna (al netto variazione scorte)</td>
</tr>
<tr>
<td>Spese per consumi delle famiglie</td>
</tr>
<tr>
<td>Investimenti fissi lordi</td>
</tr>
</tbody>
</table>
I settori della struttura produttiva ligure che possono contribuire in modo più immediato a un miglioramento del mercato del lavoro risultano quelli delle costruzioni (legato all’efficientamento energetico ed alla riqualificazione del patrimonio edilizio) e dei servizi (turismo, commercio).
A fronte di un quadro congiunturale attuale di sofferenza, si ritiene che le esigenze di raggiungimento di obiettivi di Burden Sharing al 2020 da parte della Liguria, declinati puntualmente ed a diverso livello nel PEAR, comporteranno l’installazione di capacità produttiva aggiuntiva di impianti funzionanti sfruttando fonti di energia rinnovabile.
Questa necessità di ulteriore capacità produttiva attiverà nuovi investimenti nelle diverse fonti rinnovabili identificate dal presente Piano.
I volumi di investimento generati dal soddisfacimento della domanda di nuova energia rinnovabile e dalle politiche di efficienza energetica attivate sul territorio, in parte potranno essere soddisfatti da produzione impiantistica (beni e servizi) localizzata in Liguria, con immediate ricadute locali, ed in parte da produzioni realizzate al di fuori della Regione.
La produzione sviluppabile in Liguria sarà legata sia alla capacità produttiva disponibile sul territorio che alla tenuta competitiva che le imprese liguri saranno in grado di esprimere.
A fronte delle ricadute sul tessuto produttivo regionale in termini di valore aggiunto creato dai nuovi investimenti, vi sarà altresì un effetto sull’occupazione sia in termini di forza produttiva necessaria alla produzione dei beni e dei servizi necessari al raggiungimento degli obiettivi di Burden Sharing regionale che di manodopera necessaria alla gestione e alla manutenzione degli interventi realizzati.
Parallelamente anche gli interventi di efficientamento energetico potranno comportare positive ricadute sul tessuto produttivo ligure in termini di risparmio legate alle azioni di contenimento dei consumi.
Nell’ambito degli obiettivi di piano a sostegno della realizzazione di impianti ad energie rinnovabili e di interventi di efficienza energetica, l’obiettivo di migliorare ed affinare la formazione professionale in tali campi appare inoltre del tutto complementare e di “accompagnamento” ad un razionale raggiungimento degli obiettivi “tecnici”.
I volumi di acquisizione potenzialmente appannaggio delle aziende liguri rappresentano il valore disponibile per la remunerazione della manodopera locale.
4. Le politiche energetiche in Liguria dal 2003 al 2010

4.1. Il Piano Energetico Ambientale Regionale 2003

- Aumento dell’efficienza energetica;
- Stabilizzazione delle emissioni climateranti ai livelli del 1990;
- Raggiungimento del 7% del fabbisogno energetico da fonti rinnovabili.

Ai fini del conseguimento dell’aumento dell’efficienza energetica, la Regione Liguria prevedeva di operare sia sul versante della produzione che su quello dei consumi finali, riducendo la quota di energia per Prodotto Interno Lordo (PIL) Regionale. La Regione intendeva raggiungere, al 2010, un risparmio del 10% dei consumi energetici regionali complessivi, puntando alla razionalizzazione dei consumi ed al risparmio energetico nel settore civile e sull’innovazione tecnologica dei processi produttivi.

Per quanto riguarda la stabilizzazione delle emissioni climateranti, tenendo in considerazione la funzione Paese svolta dalla Liguria relativamente al transito delle merci e della previsione di aumento tendenziale delle emissioni di CO2 dovute alla mobilità, la Regione intendeva intervenire sulla riduzione delle emissioni nei settori industriale, agricolo, civile e di produzione dell’energia.

Dal Bilancio Energetico Regionale al 1998 emergeva che solo l’1,5% dell’energia consumata in Liguria proveniva da fonti rinnovabili. L’obiettivo della Regione era di elevare tale quota al 7% entro il 2010, definendo obiettivi specifici per fonte, come riportati nella tabella seguente.

<table>
<thead>
<tr>
<th>Tecnologia</th>
<th>Obiettivo PEAR 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomassa</td>
<td>150 MWt</td>
</tr>
<tr>
<td>Solare termico</td>
<td>40 MWt</td>
</tr>
<tr>
<td>Fotovoltaico</td>
<td>qualche MWe</td>
</tr>
<tr>
<td>Eolico</td>
<td>8 MWe</td>
</tr>
<tr>
<td>Mini-idroelettrico</td>
<td>non indicato</td>
</tr>
<tr>
<td>Geotermia</td>
<td>non indicato</td>
</tr>
<tr>
<td>Rifiuti</td>
<td>250.000 MWh</td>
</tr>
</tbody>
</table>

Tabella 8 - Obiettivi PEAR 2003 suddivisi per fonte.

In sintesi, il PEAR 2003 intendeva raggiungere il riassunto energetico della Regione promuovendo la progressiva costituzione di un sistema di produzione diffuso sul territorio e caratterizzato dalla presenza di impianti produttivi di piccola-media taglia ad alta efficienza ed a contenuto impatto ambientale.

L’attenzione della Regione era anche incentrata sulla ricerca di condizioni di redditività economica degli interventi relativi all’uso delle fonti rinnovabili ed il PEAR 2003 prevedeva l’individuazione, di concerto con
gli Enti Locali, di Aree Campione in cui sperimentare e verificare sul campo gli effetti delle condizioni di redditività economica degli interventi.

Le Aree Campione, individuate dalla Regione in collaborazione con gli Enti Locali, in particolare con le Amministrazioni Provinciali, costituivano il territorio su cui attivare azioni per:

1. la valorizzazione energetica delle biomasse boschive;
2. la promozione del solare termico;
3. il risparmio energetico nel settore residenziale;
4. la valorizzazione dell’autoproduzione nelle aree industriali ed ecologicamente attrezzate.

4.2. L’attuazione del PEAR 2003 e le Aree Campione

Il processo di identificazione delle Aree Campione ha seguito un percorso che ha consentito di individuare un primo elenco di potenziali localizzazioni su cui poter effettuare analisi più approfondite, a partire dalla definizione dei criteri di selezione.

Il primo elenco di massima delle Aree Campione possibili, suddiviso per tipologia, è stato individuato applicando criteri di selezione sia di tipo territoriale che tecnologico, tali da garantire le due condizioni fondamentali per l’attuazione degli interventi, ovvero la sostenibilità economica e quella ambientale.

In linea generale la definizione delle Aree è stata avviata attraverso un’analisi di tipo multicriteria basata su una matrice che ha confrontato le caratteristiche di un’area con i fattori di successo indicati nel PEAR 2003, e ha consentito, a partire da un elenco esteso di Aree Campione, di identificarne alcune più idonee.

Tra le Aree Campione quella relativa alla valorizzazione energetica delle biomasse boschive rivestiva fondamentale importanza per la Regione, sia per motivi di ordine strutturale, quali l’elevata boscosità del territorio, che per i molteplici effetti positivi attesi sul territorio montano, quali la riduzione degli incendi boschivi, la mitigazione del dissesto idrogeologico ed il decollo dell’economia montana.

La valutazione delle zone suscettibili di interventi di valorizzazione energetica delle biomasse forestali è stata compiuta analizzando la disponibilità di biomassa, la potenziale domanda di energia termica, l’interesse delle istituzioni locali e la presenza di operatori economici di settore (segherie, PMI, cooperative…). Si è inoltre considerato il livello del dissesto idrogeologico, la presenza di progetti già elaborati e la quantità di terreno boscato di proprietà pubblica, oltre alla presenza di porzioni di territorio non metanizzate.

In attuazione del PEAR 2003, sono state individuate due Aree Campione per la promozione della biomassa: Val di Vara e Val Bormida.

Per l’Area Campione in Val di Vara si è provveduto ad effettuare una serie di analisi volte ad individuare i terreni con possibile utilizzo artigianale - industriale o forestale ed a quantificare la biomassa disponibile ad uso energetico (anche in relazione all’acclività del terreno ed alla presenza di aree SIC). Tramite le suddette analisi si è riscontrata la disponibilità di aree per l’installazione di impianti ed è stata effettuata una prima selezione delle taglie di impianto e delle soluzioni gestionali per la filiera.

Le elaborazioni effettuate hanno consentito di quantificare una superficie forestale disponibile indicativa pari a circa 14.400 ha per la Media e Bassa Val di Vara e pari a circa 26.500 ha per l’Alta Val di Vara. E’ stata, poi, eseguita un’indagine sulla domanda locale di energia, differenziando l’analisi per il settore elettrico e per le utenze termiche, in modo da individuare la presenza di potenziali utilizzatori.

Le suddette analisi hanno condotto alla definizione di alcune ipotesi progettuali di utilizzo della risorsa forestale, tenendo conto dei diversi scenari temporali possibili per il funzionamento a regime della filiera. Per le fasi di realizzazione, messa in esercizio e gestione degli impianti sono stati redatti alcuni Business Plan le cui elaborazioni hanno fatto riferimento a due fasi successive:
• FASE 1: avviamento Consorzio Forestale e realizzazione impianto per la produzione di pellet;
• FASE 2: sviluppo e potenziamento della filiera forestale e realizzazione di un impianto di cogenerazione.

E’ stato infatti prodotto un modello di statuto di consorzio forestale, oltre che i progetti per il pellettizzatore e per l’impianto di cogenerazione ad esso collegato.

Nel 2006 inoltre è stato pubblicato un bando per sostenere la realizzazione di un impianto per la produzione di pellet oltre che la sostituzione di caldaie tradizionali con altre alimentate a pellet. In tal modo venivano create contemporaneamente la domanda e l’offerta. Per quanto riguarda l’impianto di pellettizzazione, l’unica domanda pervenuta collocava l’impianto proprio in Val di Vara. Purtroppo l’impianto non è mai stato realizzato e i fondi che erano stati dedicati al bando sono poi stati reinvestiti per finanziare piccole caldaie a cippato a servizio di enti locali liguri.

In Val Bormida, analogamente, sono stati analizzati gli strumenti di pianificazione territoriale, che hanno fornito il quadro sia dei vincoli che delle potenzialità di sfruttamento delle risorse forestali. In seguito è stata condotta un’analisi specifica della proprietà boschiva e della domanda di energia all’interno della Val Bormida, differenziando l’analisi per il settore elettrico e per le utenze termiche.

Le elaborazioni effettuate hanno condotto a comprendere che la Val Bormida si presentava come un’area naturalmente vocata allo sfruttamento della risorsa forestale per uso energetico, sia per la notevole disponibilità di risorsa forestale (40.000 ha, 70.000 tonnellate annue), che per i processi già in atto sul territorio legati all’utilizzo ed alla trasformazione del legno, sia ancora per la oggettiva e reale possibilità di localizzare impianti energetici adeguati alle esigenze ed ai fabbisogni locali di alcune utenze.

Sulla base di queste considerazioni sono state ipotizzate alcune applicazioni per l’utilizzo della risorsa. Le ipotesi progettuali sono state effettuate tenendo conto dei seguenti aspetti:

- tipologia di impianto (produzione di solo calore, di calore ed energia elettrica contemporaneamente, di combustibili ad alto contenuto energetico quali pellets);
- tecnologia (caldaie a vapore, ad olio di termico, impianti a fluidi organici);
- destinazione d’uso e localizzazione (riscaldamento, produzione di energia termica ad uso industriale, energia per attività legate alla filiera legno).

Le soluzioni impiantistiche che hanno presentato le caratteristiche più convincenti nell’ambito del contesto territoriale della Val Bormida sono risultate essere la piccola cogenerazione (con tecnologia tradizionale a vapore o a ciclo organico ORC) ed il teleriscaldamento in presenza di significative utenze di calore concentrate.

I progetti preliminari elaborati hanno riguardato la realizzazione di un impianto di teleriscaldamento al servizio del polo scolastico del Comune di Carcare della potenza di 800 kW e la realizzazione di un impianto cogenerativo (a ciclo organico) presso il Comune di Massimino della potenza elettrica netta di 570 kW e della potenza termica di 2.870 kW.

Ad oggi (2014) risultano funzionanti gli impianti a cippato con rete di teleriscaldamento di Carcare (SV) della potenza di 900 kW, di Campo Ligure (GE) della potenza di 700 kW, di Rossiglione (GE) della potenza di 1,3 MW, di Masone (GE) della potenza di 1 MW a servizio di edifici pubblici, due impianti a cippato per il riscaldamento di serre a Celle Ligure (SV) della potenza di 900 kW e Albenga (SV) della potenza di 1 MW.

E’ attualmente in fase di realizzazione un impianto cogenerativo a Calizzano (SV).

La Regione Liguria, attraverso il PEAR 2003, intendeva privilegiare, oltre alla biomassa forestale, la tecnologia del solare termico che era ritenuta ad elevato potenziale di sviluppo sul territorio regionale. A tal fine la Regione aveva individuato nel settore turistico l’elemento di propulsione della domanda e nelle aree del ponente ligure i territori maggiormente vocati per questo tipo di applicazione sulla base dell’analisi di una serie di parametri tra cui:
La Regione Liguria nel periodo 2003 – 2010 ha avviato una serie di attività volte all’attivazione dell’Area Campione sul solare termico. In particolare la Regione Liguria, in collaborazione con ARE Liguria, ha predisposto delle linee guida per la progettazione di impianti solari termici, il catalogo delle tecnologie disponibili, lo studio di 10 casi pilota, nonché la progettazione di attività formative e l’elaborazione di un marchio di qualità per le strutture turistico - ricettive che decidevano di dotarsi di impianto solare termico. Le linee guida per la progettazione di impianti solari termici erano uno strumento sintetico e di semplice utilizzo per un primo approccio alla tecnologia del solare termico. Per le diverse tipologie di utenza (stabilimenti balneari e campeggi, piscine ed impianti sportivi, alberghi, agriturismo) venivano presentati gli elementi utili per un corretto dimensionamento dei sistemi solari, per la scelta della tipologia di impianto che meglio si adattava alle esigenze dell’utenza da servire ed i piani di ammortamento tipo.

I casi pilota hanno riguardato hotel, piscine comunali, stabilimenti balneari, campeggi, agriturismo, Istituti per anziani ed Istituti professionali per un totale di circa 350 m² di collettori solari.

Il marchio di qualità solare “Ospitalità Solare” era stato studiato come un’etichetta di qualità conferita dalla Regione Liguria alle strutture ricettive come simbolo di:

- sensibilità ambientale;
- spirito d’innovazione;
- attenzione agli sprechi e all’utilizzo delle risorse;
- riqualificazione dell’offerta.

“Ospitalità Solare” era un marchio studiato in modo tale da configurarsi come indipendente e allo stesso tempo integrato con altre certificazioni esistenti sul territorio ligure ed in particolare con il marchio di qualità ecologica ECOLABEL, gestito a cura di ARPAL. I benefici legati all’ottenimento del marchio solare termico andavano ricercati nel:

- miglioramento dell’immagine e accrescimento della visibilità;
- possibilità di utilizzo del marchio in tutta la comunicazione della struttura ricettiva;
- inserimento in una campagna promozionale veicolata attraverso tutti i canali (tour operator, uffici turistici, agenzie, enti ed istituzioni, fiere, giornali, Internet, ecc.) e a tutti i livelli (locale, nazionale ed internazionale).

Il marchio è stato registrato dalla Regione Liguria nel corso del 2007.

In questo contesto, il “Bando per la concessione di contributo in conto capitale per la realizzazione di interventi finalizzati al risparmio energetico e all’utilizzo delle fonti rinnovabili su strutture turistico ricettive e balneari” del 2008 ha finanziato 14 interventi relativi alla installazione di impianti solari termici in altrettante strutture ricettive liguri.

La Regione, attraverso il PEAR 2003, intendeva inoltre raggiungere al 2010 un risparmio del 10% dei consumi energetici regionali complessivi tramite la promozione allo sviluppo di ESCo e tramite l’inserimento di criteri e prescrizioni sui temi energetici negli strumenti urbanistici (quali Piani Urbanistici Comunali ed i relativi Regolamenti Edilizi), al fine di promuovere interventi di bio – architettura, energia solare, edilizia sostenibile e risparmio energetico nei nuovi insediamenti e nella riqualificazione di strutture esistenti.

Il risparmio energetico doveva essere perseguito principalmente nel settore residenziale in quanto questo presenta caratteristiche di omogeneità della domanda nel settore e in quanto vi è un’alta incidenza di
utenze pubbliche su cui l’Amministrazione può intervenire direttamente con azioni demostrative e/o sperimentali. La Regione Liguria, relativamente all’Area Campione per la promozione del risparmio energetico, nel periodo 2003 – 2010 ha redatto le linee guida per la certificazione energetica degli edifici che ha condotto alla sperimentazione su 20 casi pilota di edifici pubblici e di edilizia residenziale pubblica (ARTE).

La Regione, attraverso tale Area Campione ha realizzato una fase di sperimentazione che ha costituito la base per le successive iniziative regionali nel campo della certificazione energetica degli edifici, a partire dalla Legge Regionale n. 22 del 29/05/2007 “Norme in materia di energia” e dal Regolamento Regionale n. 6 dell’8/11/2007, sostituito poi dal Regolamento Regionale n. 1 del 22/01/2009, che hanno avviato il processo di certificazione energetica sul territorio regionale. Per il dettaglio della normativa regionale di settore si rimanda al Capitolo 2.3.

Oltre alle suddette Aree Campione la Regione intendeva operare anche sulle altre fonti rinnovabili per conseguire l’obiettivo del 7% indicato nel PEAR 2003.

Al fine di incrementare la produzione di energia idroelettrica, il PEAR 2003 promuoveva lo sfruttamento di salti idrici esistenti in coerenza con gli strumenti di pianificazione territoriali presenti ivi compresi i Piani di Bacino. Allo stesso tempo l’utilizzo delle risorse idriche per scopi energetici doveva essere compatibile con le altre utilizzazioni presenti (potabile, irriguo, ecc.) e doveva assicurare la presenza di un deflusso minimo vitale nel corso d’acqua secondo quanto previsto dalla normativa di settore. Il PEAR 2003 intendeva indirizzare le iniziative verso i progetti che presentavano elevate caratteristiche di fattibilità e di cantiereabilità ed indicava alcune linee di indirizzo sulle quali orientare e sviluppare azioni specifiche di intervento, quali:

- recupero di impianti esistenti non utilizzati con priorità per quelli con presenza di concessione di derivazione dell’acqua attiva e con percorso autorizzativo definito;
- utilizzo di salti idrici esistenti in condotte acquedottistiche e sistemi idraulici esistenti;
- analisi e verifiche specifiche su impianti esistenti al fine di individuare migliorie per incrementarne la produzione;
- realizzazione di nuovi impianti sostenibili dal punto di vista economico ed ambientale.

Nel 2004 – 2005 la Regione Liguria ha avviato un programma di finanziamento a favore di micro e mini installazioni anche a servizio di sistemi acquedottistici e del recupero di piccoli impianti idroelettrici esistenti. E’ stato realizzato un impianto micro idro demostrativo presso il Comune di Varese Ligure, un impianto mini idroelettrico su acquedotto presso il Comune di Bajardo da circa 440 kW e la costruzione di una centralina mini idroelettrica presso il Comune di Tovo San Giacomo. E’ stata condotta inoltre una manifestazione di interesse per un’ulteriore installazione su condotta acquedottistica, assegnata al Comune di Imperia.

Per quanto riguarda la fonte eolica, il PEAR 2003 affermava che il potenziale eolico regionale fosse modesto, ma conforme alle aspettative conseguenti all’analisi delle mappe eoliche e con picchi promettenti in alcune zone specifiche. Il PEAR 2003 rimandava a studi più approfonditi in situ per comprendere le reali potenzialità della risorsa e pertanto non erano individuate strategie dirette per la promozione di questa tecnologia sul territorio regionale.

La Regione, a seguito di analisi territoriali e della mappatura delle “aeree non idonee”, tramite la Delibera del Consiglio Regionale della Liguria n. 3/2009 “Aggiornamento degli obiettivi del Piano Energetico Ambientale Regionale Ligure per l’energia eolica”, ha aggiornato gli obiettivi per l’eolico portandoli dagli originari 8 MW a 120 MW.

Relativamente al solare fotovoltaico, il PEAR 2003 valutava le sue potenzialità di sviluppo inferiori rispetto a quelle del solare termico a causa di un’arretratezza della tecnologia sia dal punto di vista prestazionale.
che economico. Tuttavia la possibilità di sfruttare il potenziale legato all’installazione sui tetti dei moduli fotovoltaici veniva presa in considerazione, sebbene non venissero individuate strategie dirette per la promozione di questa tecnologia sul territorio regionale anche in relazione all’attesa dell’evoluzione della normativa relativa ai finanziamenti in ambito energetico (Conto Energia).

Sul fronte dell’efficienza energetica, oltre alle attività previste dall’Area Campione sul settore residenziale, la Regione con il supporto di ARE Liguria, era impegnata in uno studio volto all’introduzione di tecnologie innovative nel sistema ospedaliero ligure, con l’obiettivo di ottenere una significativa riduzione dei consumi energetici e delle emissioni in atmosfera delle strutture ospedaliere ligure.

Lo studio prevedeva:
- la predisposizione di linee guida che definissero i criteri da applicare per la progettazione e la realizzazione di interventi per la razionalizzazione dei consumi energetici da applicare all’intero sistema ospedaliero;
- la realizzazione di un impianto pilota nella A.S.L. 4;
- la sperimentazione di un nuovo modello per la gestione dell’energia nell’intero settore pubblico, da estendere poi nelle altre realtà ligure sia ospedaliere, che pubbliche in generale.

Questa finalità, rimodulate sulla base delle esigenze delle strutture sanitarie e delle competenze offerte dal mercato, sono state consolidate in una procedura di gara aperta dalla quale è stata aggiudicato ad un Consorzio costituito dalle principali società operanti nel settore, un contratto definito “Convenzione per il Multiservizio Tecnologico”.

La convenzione nel tempo ha raggiunto alcuni obiettivi significativi nel campo dell’efficienza energetica su uno dei patrimoni pubblici più energivori come quello sanitario. In particolare:
- è stato adottato un modello a consumo fisso (vengono pagati all’assuntore consumi a forfait indipendentemente da quelli effettivi), che incentiva l’appaltatore a monitorare con forte attenzione i consumi ed a mettere in campo tutte le azioni che ne comportino una riduzione disincentivando gli sprechi;
- è stato implementato un modello di gestione degli impianti che punta alla programmazione ed al monitoraggio continuo e costante delle manutenzioni ordinarie, intensificandole nei casi in cui gli impianti presentino caratteristiche di non piena efficienza. Ciò è stato reso possibile anche grazie all’ausilio di una anagrafica tecnica ad hoc che raccoglie dati ed attività su tutti i componenti principali. È stata parimenti organizzata una intensa attività di controllo tecnico dell’operato dell’appaltatore.
- È stata promossa, sia per clausola contrattuale che per effetto dei consumi fissi, l’innovazione degli impianti delle Strutture Sanitarie Locali, puntando all’installazione di sistemi ad alta efficienza (cogenerazione e trigenerazione, caldaia a condensazione, rinnovo di chiller obsoleti, ammodernamento degli impianti di illuminazione).

L’efficienza energetica doveva essere perseguita anche nel settore industriale, soprattutto attraverso la valorizzazione dei sistemi produttivi nelle aree industriali ecologicamente attrezzate; la strategia di intervento prevedeva la promozione di imprese multiutilities, ambientalmente certificate, in grado di fornire un’ampia gamma di servizi: energia, teleriscaldamento, acqua, smaltimento dei rifiuti, servizi ambientali e logistica.

Per quanto riguarda le “Aree Produttive Ecologicamente Attrezzate” la Regione Liguria, attraverso Liguria Ricerche SpA, ha partecipato al progetto LIFE+ ‘Eta Beta’ – Innovazione e sostenibilità delle aree produttive, che promuove l’applicazione di tecnologie ambientali a livello unitario proponendo un modello di analisi, pianificazione e intervento che viene sperimentato nelle aree pilota selezionate.
In linea con quanto indicato nelle pertinenti strategie dell’Unione Europea (ECOPA³, Strategia Europa 2020 e relativa iniziativa Faro “l’Unione dell’innovazione”), il progetto promuove un quadro di riferimento normativo e metodologico - denominato “approccio ETA-BETA” - utile per applicare i concetti di sostenibilità in quei sistemi complessi rappresentati dalle aree produttive identificate. Si tratta di ambiti territoriali nei quali le imprese si localizzano al fine di ottenere economie di scala dovute a servizi e infrastrutture comuni, dove la presenza o meno del Soggetto Gestore e le sue competenze possono fare la differenza per la policy e sostenibilità dell’Area Produttiva Ecologicamente Attrezzata. Ulteriore obiettivo è l’attuazione sperimentale di Piani di Azione per l’Eco-innovazione nelle suddette aree, con l’impiego di tecnologie ambientali innovative, che possono giocare un ruolo importante sia per la mitigazione degli impatti delle attività produttive sull’ambiente che in termini di competitività e sviluppo economico. Infine, tale approccio permette di definire strumenti per il monitoraggio delle prestazioni ambientali e per la verifica delle tecnologie ambientali implementate nelle aree pilota. L’obiettivo è migliorare l’efficienza economica e ambientale dell’area produttiva, permettendo alle imprese di acquisire maggiori vantaggi competitivi. Tale obiettivo viene perseguito agendo su diversi piani a livello di efficienza nei consumi di acqua, energia e delle risorse ambientali in senso lato, migliorare la mobilità e la qualità dell’aria, la produzione di rifiuti, minimizzare l’inquinamento acustico e del suolo, riducendo i costi operativi delle imprese ed innovando e migliorando la gestione delle stesse per una produzione rispettosa dell’ambiente e di qualità.

Il modello Eta Beta viene sperimentato in località Pertite in Val Bormida e presso la Darsena Pagliari di La Spezia.

Nella prima Area Campione è stata realizzata un’esperienza di “green project” funzionale alla realizzazione delle infrastrutture e alla riduzione degli impatti ambientali per un’area industriale ecologicamente attrezzata sita in Provincia di Savona tra i Comuni di Cengio e Millesimo. E’ stato redatto un progetto di Strumento Urbanistico Attuativo facendo riferimento alle principali normative della Regione Liguria con particolare riferimento all’art. 10 della LR n. 9/1999 in cui si definiscono le aree produttive ecologicamente attrezzate come aree che presentano un sistema coordinato di collegamenti a reti e infrastrutture atte a garantire la prevenzione integrata dell’inquinamento dell’aria, dell’acqua e del terreno e che siano dotate della strumentazione o degli spazi per il collegamento alle reti di monitoraggio e controllo delle emissioni nell’ambiente e dei fenomeni atmosferici.

A seguito dell’approvazione (nell’aprile 2012), da parte degli Enti competenti, dello Strumento Urbanistico Attuativo è stata messa al bando una gara per la progettazione definitiva del ‘Polo della meccanica’, che prevedeva l’integrazione dell’approccio Eta Beta all’interno del bando stesso. Nel progetto è prevista la realizzazione di sei nuovi fabbricati e la ristrutturazione di due fabbricati già presenti con le relative opere correlate. Gli interventi previsti a progetto che sono stati concepiti tenendo conto dei criteri di sostenibilità e innovazione in linea con l’approccio Eta Beta sono relativi alla costruzione di infrastrutture (rete elettrica e telefonica, allacciamento alla fognatura comunale, alla rete gas e all’acqua potabile, lo scarico delle acque bianche), la realizzazione dei capannoni (con elementi prefabbricati tali da garantire un’elevata qualità dal punto di vista energetico) e la ristrutturazione dell’esistente, l’installazione di pannelli fotovoltaici e di un sistema di illuminazione a led. Le opere correlate (intubamento di un Rio, la sistemazione della superficie dei piazzali...) sono state progettate in modo da limitare l’impatto ambientale.

La gara per la progettazione definitiva si è conclusa nel marzo 2013 ed è stato individuato l’aggiudicatario. Attualmente (2014) è in discussione il Regolamento d’Area per permettere una gestione unitaria di infrastrutture e servizi condivisi per dare, concretamente, un valore aggiunto alle MPMI³⁰.

La scelta dell’Area Produttiva Ecologicamente Attrezzata della ‘Darsena Pagliari’ di La Spezia è frutto di un accordo tra Provincia, Comune e Autorità Portuale di La Spezia per la realizzazione di un nuovo polo della

³ Piano d’Azione Europeo per l’Ecinnovazione.
nautica e nasce dall’esigenza delle aziende che operano in quell’area di ottimizzare i consumi, ridurre le emissioni inquinanti e rilanciare i servizi delle imprese insediate. L’area di interesse è un complesso composto da un edificio, alcune banchine, un ponte mobile e uno specchio acqueo; gli interventi a progetto, rispettosi dei principi del Piano d’Azione per l’Eco - innovazione, riguardano la realizzazione di un impianto fotovoltaico, un impianto per l’illuminazione esterna, un sistema con pompa di ricircolo dello specchio acqueo, un impianto di convogliamento delle emissioni in atmosfera, la progettazione della gestione della ‘Smart Grid’ nonché azioni di tipo istituzionale e gestionale dell’area ed è stato inoltre condotto uno studio di fattibilità per la realizzazione di un impianto per la captazione delle emissioni in atmosfera. Il Raggruppamento Temporaneo Imprese, che rappresenta il complesso, ha avuto accesso ad un bando regionale per l’installazione dell’impianto fotovoltaico.

Al fine di analizzare i risultati del PEAR 2003 occorre valutare il livello di raggiungimento dei suoi tre obiettivi strategici:

- aumento dell’efficienza energetica;
- stabilizzazione delle emissioni climateranti ai livelli del 1990;
- raggiungimento del 7% del fabbisogno energetico da fonti rinnovabili.

Per quanto riguarda l’aumento dell’efficienza energetica il PEAR 2003 prevedeva una riduzione del 10% dei consumi finali totali rispetto al dato 1998, pari a 3443 kTep e pertanto prevedeva il raggiungimento di un consumo finale totale al 2010 pari a circa 3099 kTep.

Dall’analisi del Bilancio Energetico Regionale per l’anno 2011\(^\text{11}\) (si veda Capitolo 5.1) si desume un dato di consumi finali totali pari a circa 2.550 kTep. L’obiettivo del PEAR 2003 relativamente all’efficienza energetica risulta pertanto raggiunto.

Tuttavia è opportuno evidenziare che la contrazione dei consumi è da ritenersi in gran parte legata alla crisi economica oltreché all’applicazione delle politiche energetiche; un’auspicabile ripresa dell’economia nazionale e regionale potrebbe portare infatti ad un successivo innalzamento dei consumi energetici, se non vi è un reale incremento dell’efficienza del sistema energetico ligure.

D’altro canto è utile sottolineare come la Regione abbia investito in termini normativi e procedurali tramite l’emanazione della Legge Regionale e del relativo Regolamento in tema Certificazione Energetica e che tali iniziative abbiano avuto ricadute nel contesto regionale. Il settore pubblico, che oggi presenta ancora un patrimonio edilizio energeticamente poco efficiente, dovrà funger da traino anche attraverso l’utilizzo di società come le ESCo che dovranno essere adeguatamente promosse e qualificate.

Relativamente al settore ospedaliero, oggetto di specifiche indicazioni nel PEAR 2003 ed anche di un contratto siglato tra la Regione e il consorzio Micenes nel 2005, la Convenzione stipulata per il Multiservizio Tecnologico garantisce un risparmio energetico calcolato sulle singole strutture in base agli interventi progettati e comunque complessivamente non inferiore al 10% nel 2018 rispetto la situazione pregressa. Tra le principali innovazioni e tecnologie introdotte nel sistema ospedaliero si possono evidenziare oltre 7 MW di cogenerazione e trigenerazione complessivamente installata, un diffuso ammodernamento delle centrali termiche, una massiccia introduzione della telegestione ed il ricorso a pannelli solari.

È inoltre in corso (2014) l’avvio di nuove strutture sanitarie regionali che dovranno garantire altissime prestazioni energetiche e nei casi in cui si tratti di una sostituzione, ciò comporterà notevoli risparmi energetici.

\(^\text{11}\) Bilancio Energetico Regionale più prossimo al 2010 disponibile presso il Sistema Informativo Regionale Ambientale ed assunto come baseline per il PEAR 2014-2020.

Il grado di raggiungimento degli obiettivi specifici per **fonte rinnovabile** è riportato nella tabella seguente:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotovoltaico</td>
<td>1,1</td>
<td>0,1</td>
<td>qualche MWe</td>
<td>53,6</td>
<td>3,7</td>
<td>raggiunto</td>
</tr>
<tr>
<td>Eolico*</td>
<td>4,3</td>
<td>0,7</td>
<td>8 MWe</td>
<td>23,1</td>
<td>4,2</td>
<td>raggiunto</td>
</tr>
<tr>
<td>Mini idro</td>
<td>72,5</td>
<td>20,9</td>
<td>non indicato</td>
<td>84,3</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>Rifiuti</td>
<td>-</td>
<td>-</td>
<td>250.000 MWhe</td>
<td>-</td>
<td>-</td>
<td>non raggiunto</td>
</tr>
<tr>
<td>Biogas</td>
<td>13,9</td>
<td>7,6</td>
<td>non indicato</td>
<td>19,6</td>
<td>10,7</td>
<td>-</td>
</tr>
<tr>
<td>Biomassa</td>
<td>468,2</td>
<td>48,3</td>
<td>150 MWe (riferito a quadro conoscitivo 1998)</td>
<td>450,7</td>
<td>46,5</td>
<td>raggiunto</td>
</tr>
<tr>
<td>Solare termico</td>
<td>7,0</td>
<td>0,4</td>
<td>40 MWe</td>
<td>15</td>
<td>0,9</td>
<td>non raggiunto</td>
</tr>
<tr>
<td>Pompe di calore</td>
<td>1146</td>
<td>43,1</td>
<td>non indicato</td>
<td>1400</td>
<td>53,0</td>
<td>-</td>
</tr>
<tr>
<td>TOTALE</td>
<td>121,1</td>
<td></td>
<td></td>
<td>138,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Aggiornamento PEAR: nuovo obiettivo di potenza installata di 120 MW

** Per le fonti di informazione e la metodologia di stima dei dati si veda Cap 5.3

Tabella 9 - Stato di raggiungimento degli obiettivi del PEAR 2003.

La produzione complessiva di energia da fonte rinnovabile al 2011 risultava di 138 ktep, pari al 5,4% del fabbisogno energetico regionale al 2011 (2.547 ktep). Pertanto l’obiettivo del PEAR 2003 relativamente alla produzione del 7% del fabbisogno energetico da fonti rinnovabili risulta **non raggiunto**.

Dai confronti effettuati emerge che le previsioni del PEAR 2003 sul possibile sfruttamento delle fonti rinnovabili non sono state pienamente soddisfatte e anche laddove il conseguimento dell’obiettivo sia avvenuto sono emersi problemi di contesto e difficoltà di attuazione. Di ciò è bene tener conto in fase di aggiornamento della pianificazione energetica regionale, eventualmente anche attraverso una rimodulazione del mix tecnologico per il raggiungimento degli obiettivi ed una ricalibrazione degli strumenti.

Per quanto riguarda il **solare fotovoltaico** il PEAR 2003 aveva attribuito a questa tecnologia scarso potenziale a causa degli elevati costi e della scarsa performance energetica dei pannelli. Tale fonte invece ha subito un’elevata crescita determinata dall’accelerazione tecnologica e dall’istituzione di incentivi nazionali (es. Conto Energia) che hanno reso non solo economicamente sostenibile, ma anche redditizio il ricorso a questa tecnologia. La tipologia delle installazioni è stata maggiormente orientata verso quella
integrita su edifici, sia a causa delle caratteristiche orografiche, paesistiche ed ambientali del territorio regionale, che male si prestano alla realizzazione di grandi impianti a terra, sia a causa dell’entità degli incentivi, maggiorati in caso di impianti integrati.

Analogamente gli **impianti eolici** installati in Liguria al 2011 risultano, da fonte GSE, pari a 23,1 MW e superano l’obiettivo iniziale del PEAR 2003 di 8 MW. A fronte di uno scarso potenziale dichiarato nel PEAR 2003, questa fonte ha subito infatti una significativa evoluzione, sia grazie agli effetti delle misure incentivanti nazionali, che grazie ad una più approfondita conoscenza del potenziale della fonte in vari siti, derivante dalle misurazioni effettuate da alcuni operatori di settore. La Regione Liguria con DCR n. 3 del 03/02/2009 ha pertanto ritenuto di portare ad un innalzamento dell’obiettivo sulla fonte eolica da 8 MW a 120 MW.

Per quanto riguarda la **fonte idroelettrica**, occorre osservare che la Regione Liguria presenta caratteristiche geo - morfologiche non particolarmente favorevoli allo sviluppo del settore, in particolare il carattere torrentizio dei corsi d’acqua e lo sviluppo ridotto dei bacini idrografici rendono difficile un approccio intensivo allo sfruttamento della risorsa idrica a fini energetici. Tuttavia ciò non ha impedito la diffusione in Regione dell’energia idroelettrica, che resta ancora la fonte rinnovabile per la produzione di energia elettrica più sfruttata, soprattutto in virtù della presenza di impianti dismessi e di impianti in generale serviti da serbatoio di compenso per far fronte ai periodi di magra.

Come già sottolineato nel PEAR 2003 le sopra citate caratteristiche rappresentano i fattori di maggior ostacolo alla diffusione dello sfruttamento del potenziale, e per questo motivo non sono ipotizzabili incrementi significativi rispetto alle installazioni esistenti.

Nel campo della valorizzazione dei **rifiuti**, il PEAR 2003 fissava un obiettivo di produzione energetica pari a 250.000 MWh, sulla base degli scenari presentati nel Piano Regionale di Gestione dei Rifiuti (separazione tra secco e umido ed incenerimento della frazione secca). Il Piano presentava inoltre una rassegna delle tecniche, riportando le possibilità di sfruttamento del calore ottenuto dalla combustione di Rifiuti Solidi Urbani sia tramite l’utilizzo diretto del calore attraverso reti di teleriscaldamento che mediante cogenerazione con turbine a vapore a spillamento multiplo. Al contrario di quanto previsto nel PEAR 2003 la Regione si è orientata verso la valorizzazione energetica del **biogas** prodotto in discarica, ottenendo una produzione energetica pari a circa 125.000 MWh al 2011 (fonte GSE).

Sul fronte delle fonti termiche è fondamentale il contributo al raggiungimento dell’obiettivo sulle fonti rinnovabili da parte della **biomassa forestale**. Lo sfruttamento di questa risorsa, ampiamente disponibile sul territorio regionale (potenziale teorico PEAR 2003 pari 463 ktep), richiede la costituzione di una filiera legno – energia, difficoltosa da crearsi a causa dell’elevata frammentazione fondiaria, la morfologia del territorio, la diffidenza delle popolazioni locali e la concorrenza di biomassa estera di certa provenienza e basso costo.

Le esperienze condotte relativamente alle Aree Campione in Val di Vara e in Val Bormida e nell’ambito di progetti europei su questo settore (Robinwood, Sylvamed, Biomass, Renerfor, Robinwoodplus) hanno consentito di individuare alcuni punti di forza e di debolezza del processo di filiera del legno in Liguria.

Tra le criticità e punti di debolezza si possono individuare:

- forte parcellizzazione fondiaria;
- ridotte dimensioni delle imprese;
- scarsa evoluzione tecnologica nei mezzi e nei metodi utilizzati per le varie fasi del processo: taglio, esbosco, stoccaggio, trasporto etc.;
- elevati costi di esbosco per carenza o inadeguatezza di viabilità ed infrastrutture;
- elevati costi amministrativi, sovrapposizione normativa e di competenze all’atto della concessione dell’autorizzazione all’intervento di taglio/esbosco;
- complessa orografia del territorio che spesso rende inaccessibili ampie aree boschive su versanti ripidi;
- carenza di coordinamento e di informazione tra i diversi soggetti pubblici e privati coinvolti o coinvolgibili nel processo;
I punti di forza del processo di filiera del legno in Liguria sono invece:
• notevole estensione dei boschi;
• adeguata varietà delle specie valorizzabili anche per usi non energetici (castagno, ciliegio, faggio, roverella, ...);
• presenza di aree boschive di proprietà pubblica di pregio ed interesse forestale;
• presenza di consorzi di proprietari boschivi;
• opportunità occupazionali derivanti dall’eventuale nascita di piccole imprese di taglio, di lavorazione e di distribuzione del prodotto legno;
• disponibilità di aiuti finanziari per l’avvio di impresa (Fondi Provinciali, Regionali ed Europei);
• possibilità di crescita professionale degli addetti grazie alla recente attivazione da parte della Regione dei nuovi percorsi di formazione in campo forestale;
• riattivazione di programmi di manutenzione del territorio con positive ricadute ai fini della stabilità idro - geologica del territorio.

Dall’analisi condotta emerge inoltre come il solare termico non abbia avuto in Liguria l’evoluzione prevista dal PEAR 2003, nonostante le significative potenzialità. Le cause sono da ricercarsi principalmente nella difficoltà di creare una cultura sull’utilizzo di questa tecnologia, di disporre di adeguati profili formativi per gli operatori di settore e nella mancanza di investimenti. E’ da rilevare come, analogamente a quanto avviene per le altre fonti termiche, ed in particolare per la biomassa, i dati disponibili siano parziali o comunque derivanti da stime e ciò costituisce uno dei punti di debolezza dell’attuazione del PEAR 2003. Nella prospettiva di rendere il nuovo Piano più efficace dal punto di vista dell’attuazione occorre prevedere un monitoraggio continuo, sia in termini di evoluzione dei consumi e della produzione da fonti rinnovabili sul territorio, che di evoluzione delle tecnologie, oltre che di analisi dell’efficacia delle azioni (anche rilevanti) messe in campo, al fine di tenere conto anche degli effetti di variabili esogene (legate ad esempio all’andamento demografico, alla crisi economica e all’evoluzione delle normative) che possono influenzare l’efficacia delle azioni previste.

In linea generale si può evidenziare che l’assenza di un monitoraggio continuo del Piano e quindi dei relativi aggiornamenti (che sarebbero stati necessari alla luce delle variazioni del profilo tecnologico e del quadro normativo e di incentivazione a livello nazionale) ha talvolta indebolito l’estensione di quanto sperimentato nelle Aree Campione a tutto il territorio regionale.

La programmazione dei fondi dovrà far ricorso a strumenti di ingegneria finanziaria che consentano di attuare i meccanismi incentivanti volti a massimizzare le ricadute delle iniziative (quali fondi di garanzia, fondi di rotazione...).
Tra le azioni messe in campo in questi anni dalla Regione Liguria sulle fonti rinnovabili e l’efficienza energetica, si evidenziano i seguenti bandi di finanziamento, per un ammontare di circa 20 M€:

- POR Liguria (2007-2013) - Asse 2 - Azione 2.2 – “Produzione di energia da fonti rinnovabili ed efficienza energetica – Imprese”; finanziamento concesso pari a 8.5 M€;
- POR Liguria (2007-2013) - Asse 2 - Azione 2.1 "Efficienza energetica e produzione di energia da fonti rinnovabili - Enti pubblici", finanziamento concesso pari a 5,4 M€;
- POR Liguria (2007 - 2013) - Asse 2 - Azione 2.1 "Produzione di energia da fonti rinnovabili - Enti Pubblici”; finanziamento concesso pari a 4 M€;
- “Bando per la concessione di contributi in conto capitale per la realizzazione di interventi finalizzati al risparmio energetico e all’utilizzo delle fonti rinnovabili su strutture turistico–ricettive e balneari”; finanziamento pari a 1,47 M€;
- “Bando per la concessione di contributi in conto capitale ad interventi finalizzati alla riqualificazione energetica dei processi produttivi delle imprese”; finanziamento pari a 0,8 M€;

L’Asse 2 del POR FESR 2007-2013 assumeva in particolare come obiettivo specifico “Stimolare la produzione di energia da fonti rinnovabili e l’efficienza energetica” attraverso il raggiungimento degli obiettivi operativi:

- incentivare i soggetti pubblici ad un uso efficiente delle risorse energetiche, incoraggiandone un consumo e una produzione sostenibili;
- supportare le imprese negli investimenti in efficienza energetica e nella produzione di energia da fonti rinnovabili.

Per quanto riguarda gli esiti dell’Asse 2, a fine programmazione si sono registrati 323 interventi conclusi (cfr. indicatore A2REA001), di cui 258 relativi a produzione di energia da fonte rinnovabile.

La potenza complessiva degli impianti realizzati assomma a 11,75 MWe, mentre il risparmio energetico complessivo ammonta a 13.359 tep/anno.

Nella Tabella 10 vengono riportati i valori degli indicatori di realizzazione e di risultato a livello di Asse, su base consuntiva.

In relazione agli indicatori, va anzi tutto osservato il maggior numero di interventi realizzati rispetto al corrispondente obiettivo. Ciò in relazione al minor contributo mediamente richiesto dai beneficiari, in funzione del già citato contributo in conto energia di cui hanno beneficiato diversi interventi.

Di conseguenza, la maggior parte degli altri indicatori risulta superiore ai corrispondenti target, con l’eccezione dell’energia prodotta attraverso la cogenerazione (cfr. indicatore A2REA002), frutto di un numero di interventi inferiore alle stime iniziali e della potenza nominale installata in impianti da fonti rinnovabili (cfr. indicatore A2REA003) che risulta lievemente inferiore al target; ciò nonostante che l’energia rinnovabile prodotta da tali impianti (cfr. indicatore A2RIS002) risulta largamente superiore all’obiettivo prefissato.

<table>
<thead>
<tr>
<th>Indicatori</th>
<th>Base-line</th>
<th>Obiettivo</th>
<th>Avanzamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2REA001 Interventi (n.) (a)</td>
<td>0</td>
<td>195</td>
<td>0</td>
</tr>
<tr>
<td>A2REA002 Energia prodotta da impianti di cogenerazione (in termini di MWh/anno) (b)</td>
<td>0</td>
<td>8.130</td>
<td>0</td>
</tr>
<tr>
<td>A2REA003 Potenza nominale installata in impianti da fonti rinnovabili (in MWe)</td>
<td>0</td>
<td>14.23</td>
<td>0</td>
</tr>
</tbody>
</table>

#
Indicatori

<table>
<thead>
<tr>
<th>Indicatori</th>
<th>Base-line</th>
<th>Obiettivo</th>
<th>Avanzamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2RIS002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energia rinnovabile prodotta con gli interventi cofinanziati (in MWh/anno)</td>
<td>0</td>
<td>3.470</td>
<td>0</td>
</tr>
<tr>
<td>A2RIS003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energia risparmiata con gli interventi cofinanziati (in MWh/anno)</td>
<td>0</td>
<td>3.250</td>
<td>0</td>
</tr>
</tbody>
</table>

Nota

^(a) N° di interventi conclusi in totale, inclusi quelli inerenti alla cogenerazione ed al risparmio/efficientamento energetico.

^(b) Il dato originario previsto dal POR indicava energia in termini di MW installati, tuttavia essendo in realtà disponibile – dalle schede progettuali – il dato in termini di energia, si è optato in tal senso sin dal RAE 2010 ed è stata adeguata l’unità di misura (MWh/anno) ed il relativo target (era 4,5 MW ed è stato stimato in 8.130 MWh/anno).

^(c) Come peraltro già segnalato nel RAE 2011, il dato relativo al 2010 è risultato errato (a causa di un’errata conversione ed è stato corretto in 3.647,75 MWh/anno).

^(d) Relativamente a due interventi di cogenerazione finanziati dalla linea 221 FI imprese e 1 intervento della linea 2.1.2.a

^(e) Come già segnalato nei precedenti RAE, il dato dovrebbe coincidere con l’obiettivo relativo al core24 (che risulta invece 10,5 MW) ed in tal senso si era segnalata la necessità di adeguare il dato in occasione di riprogrammazioni (cosa non avvenuta)

^(f) Non vi sono ancora serie storiche di produzione effettiva, ma si è fatto riferimento ai corrispondenti dati forniti nelle schede progettuali a supporto della domanda di finanziamento. In particolare, laddove non quantificata nella scheda progettuale la relativa produzione, il dato è stato stimato in base alla potenza installata, considerando il corrispondente funzionamento medio annuo (ad es. 1.250 h/anno per il fotovoltaico - come da bibliografia).

⁽ⁱ⁾ Il dato fornito nel RAE 2010 è risultato errato (probabile errore di conversione delle unità di misura).

⁽ⁱ⁾ Relativamente agli interventi di solo risparmio energetico e di cogenerazione (al netto quindi dell’energia prodotta da fonti rinnovabili di cui al precedente indicatore A2RIS002).

Tabella 10 – Obiettivi asse prioritario 2 del POR- FESR 2007-2013

Nel corso del 2012 sono state inoltre assegnate al Gruppo di Lavoro nuove funzioni, tra cui l’individuazione di ulteriori semplificazioni volte a favorire lo sviluppo delle fonti rinnovabili e la ridefinizione delle aree non idonee alla collocazione degli impianti eolici di tipo industriale.
5. Il quadro conoscitivo della situazione energetica ligure

5.1. Il Bilancio Energetico Regionale 2011

Al fine di costruire la strategia energetica regionale occorre istituire un quadro della situazione energetica in termini di struttura della domanda e dell’offerta energetica sul territorio. Il Bilancio Energetico Regionale (BER) costituisce lo strumento che consente di ottenere una visione globale della quantità di energia consumata entro i confini esaminati e la tipologia delle fonti energetiche utilizzate, fornendo una fotografia dello stato attuale dell’unità territoriale analizzata per un anno di riferimento in termini quantitativi. Esso evidenzia il percorso seguito dalle varie fonti energetiche a partire dalla produzione e/o importazione, attraverso le loro trasformazioni, fino all’utilizzazione finale.

La Regione Liguria realizza Bilanci Energetici di livello regionale, provinciale e locale attraverso il proprio Sistema Informativo Regionale ed in particolare attraverso E2Gov (Energy & Environmental Governance), lo strumento di base per il governo dei dati ambientali ed energetici che contiene al suo interno i modelli per la realizzazione del bilancio energetico e dell’inventario delle emissioni.

Il sistema, nato originariamente (1997) per la gestione dell’inventario delle emissioni di inquinanti dell’aria (APEX), è successivamente evoluto divenendo sistema per la gestione delle pressioni e per il governo dell’ambiente (APEX.com).

Il sistema è funzionale, tramite appositi moduli alla realizzazione di svariate applicazioni tra cui:
- Rappresentazione dei dati secondo il modello DPSIR (Determinanti-Pressioni-Stato-Impatto-Risposte) dell’Agenzia Europea dell’Ambiente;
- Predisposizione degli indicatori di supporto alla Relazione sullo Stato dell’Ambiente;
- Realizzazione di inventari delle emissioni degli inquinanti dell’aria, dell’acqua e del suolo e di catasti delle sorgenti del rumore e delle radiazioni elettromagnetiche;
- Realizzazione di Bilanci energetici;
- Valutazioni energetiche ed ambientali in specifici settori (trasporti, vegetazione, allevamenti, incendi forestali).

Il sistema è applicabile per differenti anni e a differenti scale territoriali (nazionale, regionale, provinciale, comunale) e consente l’aggiornamento e la disaggregazione dei dati tra i differenti livelli.

In particolare, il sistema E2Gov contiene i seguenti componenti:
- Data Manager, che gestisce i dati di base per il governo dell’energia e dell’ambiente (inclusi produzione e consumi energetici, dati significativi relativi ad impianti autorizzati);
- DPSIR, modello per l’elaborazione di indicatori secondo lo schema DPSIR;
- Emissions, modello per la valutazione delle emissioni di inquinanti dell’aria, dell’acqua e del suolo e la valutazione del rumore e delle radiazioni elettromagnetiche;
- Energy, modello per la valutazione del bilancio energetico;
- Disaggregations, modello per la disaggregazione spaziale (su reticoli o altre strutture geometriche) e temporale (su base mensile, giornaliera ed oraria) dei dati di base, delle emissioni e delle variabili del bilancio energetico;
- Uncertainty, modello per la valutazione dell’incertezza dei dati;
- Projections, modello per la proiezione dei dati di base, delle emissioni e delle variabili energetiche.

Sono inoltre disponibili i seguenti plug-in al sistema:
- Road per la valutazione dei determinanti, dei consumi energetici e delle emissioni da trasporti stradali;
o **Airport** per la valutazione dei determinanti, dei consumi energetici e delle emissioni da aeroporti e linee di navigazione aeree;

o **Port** per la valutazione dei determinanti, dei consumi energetici e delle emissioni da porti e linee di navigazione;

o **Fire** per la valutazione delle emissioni da incendi forestali;

o **Forest** per la valutazione delle emissioni dalla vegetazione;

o **Livestock** per la valutazione delle emissioni da allevamenti di bestiame;

o **Landfill** per la valutazione delle emissioni da discariche di rifiuti;

o **Speciation** per la speciazione delle emissioni di inquinanti dell’aria, dell’acqua e del suolo.

EiGov produce bilanci energetici e delle emissioni di anidride carbonica, nonché proiezioni su base regionale, provinciale e comunale.

Il sistema è già utilizzato in differenti realtà territoriali ed in particolare è utilizzato per la gestione in forma integrata del Bilancio Energetico, degli scenari energetici, dell’Inventario delle Emissioni e della Relazione sullo Stato dell’Ambiente della Regione Liguria e per la gestione del bilancio energetico e delle emissioni di gas serra della Provincia di Genova.

Con riferimento al bilancio energetico regionale il sistema è in grado di gestire tutti i dati relativi e di fornire il bilancio energetico secondo i seguenti schemi:

- lo schema utilizzato dal Ministero dello Sviluppo Economico per il Bilancio Energetico Nazionale;
- lo schema utilizzato da ENEA per i bilanci regionali;
- uno schema di maggior dettaglio che, integrato con informazioni raccolte da parte dei Comuni, consente la redazione del Baseline Emission Inventory del Patto dei Sindaci.

Le fonti energetiche sono distinte in primarie e secondarie. Sono classificate nel primo gruppo carbone, combustibili vegetali, carbone per cokeria, rifiuti industriali, petrolio greggio, gas naturale, biogas, energia idroelettrica, energia fotovoltaica, energia eolica, energia solare; appartengono al secondo gruppo prodotti da carbone non energetico, coke da cokeria, olio combustibile, gasolio, kerosene, naphta, benzina, derivati del petrolio, prodotti petrolieri non energetici, GPL, gas di cokeria, gas di altoforno, gas di raffineria, energia elettrica, calore.

Per quanto riguarda lo schema utilizzato dal Ministero dello Sviluppo Economico sono prodotti i seguenti bilanci (sia in unità fisiche che in unità energetiche):

- Bilancio di sintesi (struttura per settori in Tabella 11);
- Bilancio delle trasformazioni (struttura per settori in Tabella 12);
- Bilancio dei consumi e perdite del settore energetico;
- Bilancio dei consumi finali (struttura per settori in Tabella 13);
- Bilancio dell’anidride carbonica.

<table>
<thead>
<tr>
<th>Macrosettore</th>
<th>Settore</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Produzioni</td>
<td>01001</td>
</tr>
<tr>
<td>02</td>
<td>Importazioni</td>
<td>02001</td>
</tr>
<tr>
<td>03</td>
<td>Esportazioni</td>
<td>03001</td>
</tr>
<tr>
<td>04</td>
<td>Variazione scorte</td>
<td>04001</td>
</tr>
<tr>
<td>05</td>
<td>Consumo interno lordo</td>
<td>05001</td>
</tr>
<tr>
<td>06</td>
<td>Trasformazioni</td>
<td>06001</td>
</tr>
<tr>
<td>07</td>
<td>Consumi e perdite del settore energetico</td>
<td>07002</td>
</tr>
<tr>
<td>08</td>
<td>Consumi finali</td>
<td>07003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08001</td>
</tr>
<tr>
<td>Macrosettore</td>
<td>Settore</td>
<td>Attività</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>08002</td>
<td>Industria</td>
<td>08001001</td>
</tr>
<tr>
<td>08003</td>
<td>Servizi</td>
<td>08001002</td>
</tr>
<tr>
<td>08004</td>
<td>Civile</td>
<td>08001003</td>
</tr>
</tbody>
</table>

09 Totale consumi energetici 09001 Totale consumi energetici
10 Bunkeraggi 10001 Bunkeraggi
12 Totale impieghi 12001 Totale impieghi

Tabella 11 – Struttura del bilancio di sintesi (Sistema Informativo Regionale Ambientale della Liguria).

<table>
<thead>
<tr>
<th>Macrosettore</th>
<th>Settore</th>
<th>Attività</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 Trasformazioni</td>
<td>06001 Ingressi</td>
<td>06001001 Carbonaie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06001002 Cokerie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06001003 Officine del gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06001004 Altiforni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06001005 Raffinerie di petrolio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06001006 Centrali idroelettriche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06001007 Centrali geotermiche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06001008 Centrals termoelettriche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06001009 Centrali eoliche/fotovolt.</td>
</tr>
<tr>
<td>06002 Fonti ottenute</td>
<td>06001001 Carbonaie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>06002002 Cokerie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06002003 Officine del gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06002004 Altiforni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06002005 Raffinerie di petrolio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06002006 Centrali idroelettriche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06002007 Centrali geotermiche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06002008 Centrali termoelettriche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06002009 Centrali eoliche/fotovolt.</td>
</tr>
<tr>
<td>06003 Perdite di trasformazione</td>
<td>06001001 Carbonaie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>06003002 Cokerie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06002003 Officine del gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06002004 Altiforni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06003005 Raffinerie di petrolio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06003006 Centrali idroelettriche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06002007 Centrali geotermiche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06003008 Centrali termoelettriche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06003009 Centrali eoliche/fotovolt.</td>
</tr>
<tr>
<td>06004 Prodotti non energetici</td>
<td>06004001 Cokerie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>06004002 Officine del gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06004003 Raffinerie di petrolio</td>
</tr>
</tbody>
</table>

Tabella 12 – Struttura del bilancio delle trasformazioni.

<table>
<thead>
<tr>
<th>Macrosettore</th>
<th>Settore</th>
<th>Attività</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 Consumi finali</td>
<td>08001 Agricoltura e pesca</td>
<td>08001001 Agricoltura</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08001002 Pesca</td>
</tr>
<tr>
<td></td>
<td>Industria</td>
<td>08002001 Siderurgia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08002002 Estrattive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08002003 Metalli non ferrosi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08002004 Meccanica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08002005 Agroalimentare</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08002006 Tessili e abbigliamento</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08002007 Materiali da costruzione</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08002008 Vetro/ceramica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08002009 Chimica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08002010 Petrolchimica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08002011 Cartaria e grafica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08002012 Altre manifatturiere</td>
</tr>
</tbody>
</table>
Macrosettore | Settore | Attività |
---|---|---|
08003 | Servizi | Edilizia e costruz. Civili |
 | | Trasporti ferroviari |
 | | Trasporti via acqua |
 | | Trasporti stradali |
 | | Trasporti aerei |
 | | Altri pubblici |
08004 | Civile | Domestico |
 | | Terziario |
 | | Pubblica amministrazione |

Tabella 13 – Struttura del bilancio dei consumi finali.

Nella Tabella 14 è invece riportata la struttura del bilancio in formato ENEA prodotto dal sistema.

<table>
<thead>
<tr>
<th>Macrosettore</th>
<th>Settore</th>
<th>Attività</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Produzioni</td>
<td>0101</td>
</tr>
<tr>
<td>02</td>
<td>Saldo in entrata</td>
<td>0201</td>
</tr>
<tr>
<td>03</td>
<td>Saldo in uscita</td>
<td>0301</td>
</tr>
<tr>
<td>04</td>
<td>Bunkeraggi internazionali</td>
<td>0401</td>
</tr>
<tr>
<td>05</td>
<td>Variazione delle scorte</td>
<td>0501</td>
</tr>
<tr>
<td>06</td>
<td>Disponibilità interna lorda</td>
<td>0701</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0703</td>
</tr>
<tr>
<td>0701</td>
<td></td>
<td>0701001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0701002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0701003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0701004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0701005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0701006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0701007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0701008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0701009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0701010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0701011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0701012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0701013</td>
</tr>
<tr>
<td>0702</td>
<td></td>
<td>0702001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0702002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0702003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0702004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0702005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0702006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0702007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0702008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0702009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0702010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0702011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0702012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0701013</td>
</tr>
<tr>
<td>0703</td>
<td></td>
<td>0703001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0703002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0703003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0703004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0703005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0703006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0703007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0703008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0703009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0703010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0703011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0703012</td>
</tr>
<tr>
<td>Macrosettore</td>
<td>Settore</td>
<td>Attività</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>08 Consumi e perdite del settore energia</td>
<td>0801 Consumi e perdite del settore energia</td>
<td>0703012 Pompe di calore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0801001 Centrali elettriche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0801002 Cokerie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0801003 Carbonaie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0801004 Altiforni</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0801005 Impianti di gas naturale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0801006 Officine del gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0801007 Raffinerie di petrolio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0801008 Termovalorizzatori</td>
</tr>
<tr>
<td>09 Disponibilità interna</td>
<td>0901001 Usi non energetici</td>
<td>1001001 Chimica e petrolchimica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1001002 Altri</td>
</tr>
<tr>
<td>10 Consumi finali</td>
<td>1002001 Industria</td>
<td>1002001 Siderurgia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1002002 Metalli non ferrosi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1002003 Chimica e petrolchimica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1002004 Materiali da costruzione</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1002005 Vetro e ceramica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1002006 Carta e cartotecnica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1002007 Estrattive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1002008 Alimentari, bevande e tabacco</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1002009 Tessili e abbigliamento</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1002010 Meccanica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1002011 Altre industrie manifatturiere</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1002012 Costruzioni</td>
</tr>
<tr>
<td></td>
<td>1003001 Trasporti</td>
<td>1003001 Trasporto aereo interno</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1003002 Trasporti su strada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1003003 Trasporti ferroviari</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1003004 Navigazione marittima interna</td>
</tr>
<tr>
<td></td>
<td>1004001 Agricoltura e pesca</td>
<td>1004001 Agricoltura, silvicoltura e zootecnia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1004002 Pesca</td>
</tr>
<tr>
<td></td>
<td>1005001 Civile</td>
<td>1005001 Residenziale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1005002 Terziario</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1005003 Pubblica amministrazione</td>
</tr>
<tr>
<td></td>
<td>1006001 Usi non energetici</td>
<td>1006001 Chimica e petrolchimica</td>
</tr>
</tbody>
</table>

Tabella 14 – Struttura del bilancio nel modello ENEA.

Nel presente documento, al fine di analizzare la situazione energetica regionale, si fa riferimento al Bilancio Energetico di Sintesi (provvisorio) in formato ENEA più aggiornato a disposizione (Tabella 15), ovvero relativo all’anno 2011 e vengono effettuati confronti con i Bilanci Energetici Regionali relativi agli anni 1998 (Tabella 16), 2005 (Tabella 17) e 2008 (Tabella 18).
<table>
<thead>
<tr>
<th>MACRO SETTORE</th>
<th>SETTORE</th>
<th>Combustibili solidi</th>
<th>Combustibili liquidi</th>
<th>Combustibili gassosi</th>
<th>Fonti rinnovabili</th>
<th>Calore</th>
<th>Energia elettrica</th>
<th>TOTALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produzioni</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>169</td>
<td>0</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Saldo import-export</td>
<td></td>
<td>1.788</td>
<td>2.029</td>
<td>1.450</td>
<td>0</td>
<td>0</td>
<td>-328</td>
<td>4.940</td>
</tr>
<tr>
<td>Bunkeraggi internazionali</td>
<td></td>
<td>0</td>
<td>-843</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-843</td>
</tr>
<tr>
<td>Variazione delle scorte</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Disponibilità interna lorda</td>
<td></td>
<td>1.788</td>
<td>1.186</td>
<td>1.450</td>
<td>169</td>
<td>0</td>
<td>-328</td>
<td>4.265</td>
</tr>
<tr>
<td>Settori di Trasformazione</td>
<td></td>
<td>Ingressi</td>
<td>-2.142</td>
<td>-1.505</td>
<td>-556</td>
<td>-121</td>
<td>-4.325</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Centrali el Tuelectriche</td>
<td>-1.714</td>
<td>-47</td>
<td>-556</td>
<td>-56</td>
<td></td>
<td>-2.373</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cokerie</td>
<td>-429</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>-429</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raffinerie di petrolio</td>
<td>0</td>
<td>-1.458</td>
<td>0</td>
<td>0</td>
<td></td>
<td>-1.458</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altri impianti</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-66</td>
<td></td>
<td>-66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uscite</td>
<td>386</td>
<td>1.425</td>
<td>0</td>
<td>0</td>
<td>69</td>
<td>960</td>
<td>2.840</td>
</tr>
<tr>
<td></td>
<td>Centrali el Tuelectriche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>960</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cokerie</td>
<td>386</td>
<td></td>
<td></td>
<td></td>
<td>386</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raffinerie di petrolio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.425</td>
<td>1.425</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altri impianti</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>69</td>
<td></td>
<td>69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trasferimenti</td>
<td>-621</td>
<td>-12</td>
<td>-294</td>
<td>-101</td>
<td>69</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energia elettrica</td>
<td>-618</td>
<td>-12</td>
<td>-294</td>
<td>-36</td>
<td>960</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calore</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>-66</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altro</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumi e perdite del settore energia</td>
<td></td>
<td>-32</td>
<td>-47</td>
<td>-47</td>
<td>0</td>
<td>-3</td>
<td>-104</td>
<td>-233</td>
</tr>
<tr>
<td>Disponibilità interna</td>
<td></td>
<td>0</td>
<td>-1.060</td>
<td>-847</td>
<td>-47</td>
<td>-66</td>
<td>-528</td>
<td>-2.547</td>
</tr>
<tr>
<td>Consumi finali</td>
<td></td>
<td>0</td>
<td>-1.060</td>
<td>-847</td>
<td>-47</td>
<td>-66</td>
<td>-528</td>
<td>-2.547</td>
</tr>
<tr>
<td></td>
<td>Industria</td>
<td>0</td>
<td>-48</td>
<td>-198</td>
<td>0</td>
<td>-7</td>
<td>-100</td>
<td>-353</td>
</tr>
<tr>
<td></td>
<td>Manifatturiera di base</td>
<td>0</td>
<td>-43</td>
<td>-78</td>
<td>0</td>
<td>-5</td>
<td>-50</td>
<td>-176</td>
</tr>
<tr>
<td></td>
<td>Manifatturiera non di base</td>
<td>0</td>
<td>-5</td>
<td>-120</td>
<td>0</td>
<td>-2</td>
<td>-49</td>
<td>-177</td>
</tr>
<tr>
<td></td>
<td>Trasporti</td>
<td>0</td>
<td>-853</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-27</td>
<td>-880</td>
</tr>
<tr>
<td></td>
<td>Trasporti su strada</td>
<td>0</td>
<td>-852</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-852</td>
</tr>
<tr>
<td></td>
<td>Altre modalità di trasporto</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-27</td>
<td>-28</td>
</tr>
<tr>
<td></td>
<td>Altri settori</td>
<td>0</td>
<td>-159</td>
<td>-649</td>
<td>-47</td>
<td>-59</td>
<td>-401</td>
<td>-1.315</td>
</tr>
<tr>
<td></td>
<td>Agricoltura e pesca</td>
<td>0</td>
<td>-35</td>
<td>-12</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>-49</td>
</tr>
<tr>
<td></td>
<td>Residenziale</td>
<td>0</td>
<td>-73</td>
<td>-516</td>
<td>-47</td>
<td>-5</td>
<td>-162</td>
<td>-803</td>
</tr>
<tr>
<td></td>
<td>Terziario e Pubblica Amministrazione</td>
<td>0</td>
<td>-51</td>
<td>-121</td>
<td>0</td>
<td>-54</td>
<td>-236</td>
<td>-462</td>
</tr>
</tbody>
</table>
NOTA METODOLOGICA

(2) Nel bilancio regionale sono state contabilizzate in forma dettagliata le quantità importate ed esportate in Regione, mediante indagini dirette presso il Porto Petrol. il terminale GNL, TERNAD altri operatori. Con riferimento all’energia elettrica il relativo saldo import-export è quantificato in base al surplus di produzione elettrica rispetto ai consumi elettrici (comprese le perdite) in Regione.

(3) I consumi finali in Tabella 15 non comprendono i consumi relativi alla navigazione in acque nazionali ed al trasporto aereo, tradizionalmente inclusi nei Bunkeraggi.

Il Bilancio Energetico di Sintesi in formato ENEA ricavato a partire dai dati del Sistema Informativo Regionale Ambientale consente di delineare alcune considerazioni sul profilo energetico del territorio ligure per l’anno 2011. Per quanto riguarda la situazione delle fonti rinnovabili di energia si rimanda al Capitolo 5.3 dedicato al tema specifico. Dall’analisi del BER 2011 e dal suo confronto con il BER 1998 riportato nel PEAR 2003 (Tabella 16) emerge che:

- la disponibilità lorda complessiva di energia primaria nel territorio ligure è stata per l’anno considerato pari a 4.265 ktep ed i consumi finali per usi energetici sono stati pari a 2.547 ktep. La Liguria mantiene la propria funzione quale importante porta d’ingresso per le importazioni di energia del Paese che contraddistingue l’assetto energetico della regione da molti decenni.

- La regione rimane un importantissimo punto di ingresso e transito per l’energia importata in Italia ed in Europa, in particolare di petrolio, di cui la stragrande maggioranza non rimane in regione bensì viene ri-esportata.

![Figura 4 - Import/Export e transito di energia per la Liguria - Anno 2011.](image-url)

- Circa la metà dell’energia elettrica prodotta in regione (528 ktep su 960 ktep prodotti) viene effettivamente consumata all’interno del territorio regionale; il resto viene esportato attraverso la rete di trasmissione nazionale ed è all’origine dell’evidente forte divario fra i consumi finali di energia ed i consumi di fonti primarie di energia. Pertanto, fornendo energia elettrica al resto
d’Italia, la Liguria svolge un’importante funzione per il Paese, subendone nel contempo i relativi disagi ed impatti ambientali in termini di emissioni inquinanti (SO₂, NOₓ, polveri) e di gas climalteranti.

Figura 5 - Mix di generazione dell’energia elettrica per fonte e usi finali – Liguria - Anno 2011.

- Il comparto delle trasformazioni è stato caratterizzato in questi anni da una riduzione netta dello sfruttamento dei prodotti petroliferi a favore dei combustibili gassosi.
L’analisi del Bilancio Energetico consente inoltre alcune considerazioni relative ai consumi finali di energia:

- Si riscontra una riduzione dei consumi finali per usi energetici, particolarmente evidente nel settore industriale e legata alla riduzione di consumi dei combustibili solidi. Restano sostanzialmente stabili, negli ultimi anni, il consumo di energia elettrica e di combustibili gassosi.
• Al settore civile va attribuita una quota pari a circa il 50% dei consumi finali; tale preponderanza è imputabile, oltre che alla terziarizzazione dell’economia ligure, alla ridotta efficienza energetica degli edifici, che, pur inseriti in un contesto caratterizzato da condizioni climatiche favorevoli, presentano un elevato consumo annuo di energia primaria per m² di superficie utilizzata.

![Diagrama dei consumi finali di energia per settore - Regione Liguria Anno 2011.](image)

• Il settore dei trasporti incide per il 35% circa dei consumi finali, ma resta dipendente dal sistema nazionale e risulta quindi al di fuori del controllo delle autorità territoriali della Regione: in Liguria, attraverso il sistema portuale, il sistema ferroviario ed il sistema autostradale, transita infatti una quota significativa del traffico merci nazionale. La parte di questa funzione assolta via terra penalizza in modo serio la mobilità ligure e ha effetti rilevanti sulla qualità dell’aria, come già evidenziato nel PEAR 2003.

• In ambito agricolo, rispetto al 1998, si registra una riduzione dei consumi di origine petrolifera.

Dal confronto con la media italiana (pro capite) inoltre emerge quanto segue:
• il consumo di fonte primaria è allineato a quello medio italiano;
• nonostante la deindustrializzazione e la chiusura della siderurgia a caldo, la quota di combustibili solidi, legata alle trasformazioni energetiche, rimane molto alta, di molto superiore alla media italiana;
• il contributo delle fonti rinnovabili resta di scarso rilievo.
Figura 12 - Consumi pro capite di energia primaria per fonte – Confronto Liguria/ Italia – Anno 2011.

A partire dalle informazioni contenute nel Bilancio Energetico 2011 per la Liguria, è possibile effettuare alcune considerazioni in merito al Consumo Finale Lordo Regionale (per la definizione si rimanda al Capitolo 2.2).

Dall’analisi dei dati contenuti nel Sistema Informativo Regionale Ambientale risulta un **Consumo Finale Lordo al 2011 pari a circa 2.634 ktep**.

Occorre precisare che tale valore, secondo quanto riportato nella nota metodologica di cui alla Tabella 15, non comprende i consumi relativi alla navigazione in acque nazionali ed al trasporto aereo, tradizionalmente inclusi nei Bunkeraggi. Tali consumi sono infatti considerati relativi ad ambiti di competenza che superano le politiche regionali, concorrendo ad assetti strategici dell’intero Paese (quali il trasferimento di merci e passeggeri tra regioni italiane, oltre che verso e da paesi esteri).

Relativamente alle emissioni di anidride carbonica correlate al Bilancio Energetico Regionale 2011, esse vengono calcolate secondo l’approccio standard IPCC e sono pertanto riferite ai soli consumi finali di energia sul territorio regionale (“approccio territoriale”). Pertanto non vengono conteggiate le emissioni di CO₂ riferite all’energia elettrica generata, ma non consumata in regione, in quanto esportata e quelle associabili agli usi non-energetici (produzione lubrificanti, concimi, materie plastiche e fibre sintetiche).

Non vengono inoltre tenute in considerazione le emissioni in atmosfera degli altri gas climaticamente importanti, in particolare le perdite di gas metano nell’industria (energetica e non) e da rifiuti e le emissioni generate in agricoltura sia di metano che di ossido di azoto.

Il vettore energetico che nel 2011 genera la quota maggiore di emissioni di CO₂ è l’energia elettrica (37%), seguito dal gas metano (24%) e dal diesel per autotrazione (22%).

Il settore di consumo finale che provoca la quota maggiore delle emissioni di CO₂ è il settore dei trasporti, seguito dal domestico. È evidente la forte contrazione delle emissioni di CO₂ nel settore industriale, soprattutto nel periodo fra il 2005 e 2008.

Disponibilità ed Impieghi

<table>
<thead>
<tr>
<th>Fonti energetiche</th>
<th>Comb. Solidi (*)</th>
<th>Prodotti Petroliferi (**)</th>
<th>Comb. Gassosi (***)</th>
<th>Rinnovabili (****)</th>
<th>En. Elettrica (*****</th>
<th>Totale</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUZIONE PRIMARIA</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>SALDO IN ENTRATA</td>
<td>3.137</td>
<td>3.278</td>
<td>984</td>
<td>43</td>
<td>7.442</td>
<td></td>
</tr>
<tr>
<td>SALDO IN USCITA</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td>1.311</td>
<td>1.495</td>
</tr>
<tr>
<td>VARIAZIONE SCORTE</td>
<td>-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-18</td>
</tr>
<tr>
<td>CONSUMO INTERNO LORDO</td>
<td>3.142</td>
<td>3.112</td>
<td>984</td>
<td>102</td>
<td>-1.311</td>
<td>6.030</td>
</tr>
<tr>
<td>TRASFOR. IN EN. ELETTRICA</td>
<td>-2.185</td>
<td>-666</td>
<td>-55</td>
<td>-51</td>
<td>2.957</td>
<td></td>
</tr>
<tr>
<td>di cui: autoproduzione</td>
<td>-61</td>
<td>-15</td>
<td>-7</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONS./PERDITE SETT. ENERGIA</td>
<td>-493</td>
<td>-46</td>
<td>-27</td>
<td>-1</td>
<td>-1.143</td>
<td>-1.709</td>
</tr>
<tr>
<td>BUNKERAGGI INTERNAZIONALI</td>
<td>634</td>
<td></td>
<td></td>
<td></td>
<td>634</td>
<td></td>
</tr>
<tr>
<td>USI NON ENERGETICI</td>
<td>32</td>
<td>211</td>
<td></td>
<td></td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>AGRICOLTURA</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>INDUSTRIA</td>
<td>429</td>
<td>105</td>
<td>237</td>
<td>1</td>
<td>152</td>
<td>925</td>
</tr>
<tr>
<td>di cui: energy intensive (+)</td>
<td>421</td>
<td>65</td>
<td>208</td>
<td>1</td>
<td>98</td>
<td>793</td>
</tr>
<tr>
<td>CIVILE</td>
<td>3</td>
<td>294</td>
<td>660</td>
<td>5</td>
<td>316</td>
<td>1.323</td>
</tr>
<tr>
<td>di cui: residenziale</td>
<td>3</td>
<td>220</td>
<td>533</td>
<td>50</td>
<td>152</td>
<td>957</td>
</tr>
<tr>
<td>TRASPORTI</td>
<td>1.073</td>
<td>5</td>
<td></td>
<td>32</td>
<td>1.110</td>
<td></td>
</tr>
<tr>
<td>di cui: stradali</td>
<td>1.060</td>
<td>5</td>
<td></td>
<td></td>
<td>1.065</td>
<td></td>
</tr>
<tr>
<td>CONSUMI FINALI</td>
<td>432</td>
<td>1.555</td>
<td>902</td>
<td>51</td>
<td>503</td>
<td>3.443</td>
</tr>
</tbody>
</table>

(*) carbone fossile, lignite, coke da cokeria, legna, prodotti da carbone non energetici ed i gas derivati
(**) olio combustibile, gasolio, distillati leggeri, benzine, carboturbo, petrolio da riscaldamento, gpl, gas residui di raffineria ed altri prodotti petroliferi
(***) gas naturale e gas d’officina
(****) biomasse, carbone da legna, eolico, solare, fotovoltaico, RU, produzione idroelettrica, geotermoelettrica, ecc.
(***** l’energia elettrica è valutata a 2.200 kcal/kWh per la produzione idro, geo e per il saldo in entrata ed in uscita; per i consumi finali è valutata a 860 kcal/kWh
(+ branche “Carta e grafica”, “Chimica e Petrochimica”, “Minerali non metalliferi”, “Metalli ferrosi e non”

<table>
<thead>
<tr>
<th>MACRO SETTORE</th>
<th>SETTORE</th>
<th>Combustibili solidi</th>
<th>Combustibili liquidi</th>
<th>Combustibili gassosi</th>
<th>Fonti rinnovabili</th>
<th>Calore</th>
<th>Energia elettrica</th>
<th>TOTALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produzioni</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>147</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>Saldo import-export</td>
<td></td>
<td>2.325</td>
<td>2.243</td>
<td>1.437</td>
<td>0</td>
<td>0</td>
<td>-346</td>
<td>5.659</td>
</tr>
<tr>
<td>Bunkeraggi internazionali</td>
<td></td>
<td>0</td>
<td>-816</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-816</td>
</tr>
<tr>
<td>Variazione delle scorte</td>
<td></td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>58</td>
</tr>
<tr>
<td>Disponibilità interna lorda</td>
<td></td>
<td>2.383</td>
<td>1.427</td>
<td>1.437</td>
<td>147</td>
<td>0</td>
<td>-346</td>
<td>5.048</td>
</tr>
<tr>
<td>Settori di Trasformazione</td>
<td>Ingressi</td>
<td>-2.664</td>
<td>-1.736</td>
<td>-381</td>
<td>-98</td>
<td></td>
<td>-4.879</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Centrale elettriche</td>
<td>-2.229</td>
<td>-45</td>
<td>-381</td>
<td>-29</td>
<td></td>
<td>-2.684</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cokerie</td>
<td>-435</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>-435</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raffineria di petrolio</td>
<td>0</td>
<td>-1.691</td>
<td>0</td>
<td>0</td>
<td></td>
<td>-1.691</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altri impianti</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-69</td>
<td></td>
<td>-69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uscite</td>
<td>434</td>
<td>1.662</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1.024</td>
<td>3.120</td>
</tr>
<tr>
<td></td>
<td>Centrale elettriche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.024</td>
<td>1.024</td>
</tr>
<tr>
<td></td>
<td>Cokerie</td>
<td>434</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>434</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raffineria di petrolio</td>
<td></td>
<td>1.662</td>
<td></td>
<td></td>
<td></td>
<td>1.662</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altri impianti</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trasferimenti</td>
<td>-801</td>
<td>-17</td>
<td>-182</td>
<td>-93</td>
<td>-70</td>
<td>-1.023</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energia elettrica</td>
<td>-800</td>
<td>-17</td>
<td>-182</td>
<td>-24</td>
<td>-70</td>
<td>-1.023</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calore</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-69</td>
<td>-70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altri</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Consumi e perdite del settore energia</td>
<td></td>
<td>-33</td>
<td>-42</td>
<td>-59</td>
<td>0</td>
<td>-1</td>
<td>-145</td>
<td>-280</td>
</tr>
<tr>
<td>Disponibilità interna</td>
<td>-191</td>
<td>-1.311</td>
<td>-996</td>
<td>-49</td>
<td>-69</td>
<td>-532</td>
<td>-3.149</td>
<td></td>
</tr>
<tr>
<td>Consumi finali</td>
<td>-191</td>
<td>-1.311</td>
<td>-996</td>
<td>-49</td>
<td>-69</td>
<td>-532</td>
<td>-3.149</td>
<td></td>
</tr>
<tr>
<td>Industria</td>
<td>-191</td>
<td>-17</td>
<td>-318</td>
<td>0</td>
<td>-19</td>
<td>-132</td>
<td>-677</td>
<td></td>
</tr>
<tr>
<td>Manifatturiera di base</td>
<td>-191</td>
<td>-6</td>
<td>-107</td>
<td>0</td>
<td>-17</td>
<td>-80</td>
<td>-401</td>
<td></td>
</tr>
<tr>
<td>Manifatturiera non di base</td>
<td>0</td>
<td>-11</td>
<td>-211</td>
<td>0</td>
<td>-2</td>
<td>-52</td>
<td>-276</td>
<td></td>
</tr>
<tr>
<td>Trasporti</td>
<td>0</td>
<td>-1.067</td>
<td>0</td>
<td>0</td>
<td>-29</td>
<td>-1.096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trasporti su strada</td>
<td>0</td>
<td>-1.066</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1.066</td>
<td></td>
</tr>
<tr>
<td>Altre modalità di trasporto</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-29</td>
<td>-30</td>
<td></td>
</tr>
<tr>
<td>Altri settori</td>
<td>0</td>
<td>-228</td>
<td>-678</td>
<td>-49</td>
<td>-50</td>
<td>-371</td>
<td>-1.376</td>
<td></td>
</tr>
<tr>
<td>Agricoltura e pesca</td>
<td>0</td>
<td>-22</td>
<td>-12</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>-37</td>
<td></td>
</tr>
<tr>
<td>Residenziale</td>
<td>0</td>
<td>-121</td>
<td>-540</td>
<td>-49</td>
<td>-1</td>
<td>-162</td>
<td>-873</td>
<td></td>
</tr>
<tr>
<td>Terziario e Pubblica Amministrazione</td>
<td>0</td>
<td>-84</td>
<td>-126</td>
<td>0</td>
<td>-50</td>
<td>-206</td>
<td>-466</td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Banca dati E²Gov² - Sistema Informativo Regionale Ambientale.
<table>
<thead>
<tr>
<th>MACRO SETTORE</th>
<th>SETTORE</th>
<th>Combustibili solidi</th>
<th>Combustibili liquidi</th>
<th>Combustibili gassosi</th>
<th>Fonti rinnovabili</th>
<th>Calore</th>
<th>Energia elettrica</th>
<th>TOTALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produzioni</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>177</td>
<td>0</td>
<td>0</td>
<td>-471</td>
<td>177</td>
</tr>
<tr>
<td>Saldo import-export</td>
<td>2.175</td>
<td>2.300</td>
<td>1.621</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-471</td>
<td>5.625</td>
</tr>
<tr>
<td>Bunkeraggi internazionali</td>
<td>0</td>
<td>-971</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-971</td>
<td></td>
</tr>
<tr>
<td>Variazione delle scorte</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Disponibilità interna lorda</td>
<td>2.212</td>
<td>1.329</td>
<td>1.621</td>
<td>176</td>
<td>0</td>
<td>-471</td>
<td>4.868</td>
<td></td>
</tr>
<tr>
<td>Settori di Trasformazione</td>
<td>Ingressi</td>
<td>-2.608</td>
<td>-1.644</td>
<td>-719</td>
<td>-131</td>
<td>-5.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrali elettriche</td>
<td>-2.166</td>
<td>-65</td>
<td>-719</td>
<td>-62</td>
<td>-3.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cokerie</td>
<td>-442</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-442</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raffinerie di petrolio</td>
<td>0</td>
<td>-1.578</td>
<td>0</td>
<td>0</td>
<td>-1.578</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altri impianti</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-69</td>
<td>-69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uscite</td>
<td>441</td>
<td>1.566</td>
<td>0</td>
<td>0</td>
<td>1.134</td>
<td>3.142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrali elettriche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.134</td>
<td>1.134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cokerie</td>
<td>441</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raffinerie di petrolio</td>
<td></td>
<td>1.566</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altri impianti</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trasferimenti</td>
<td>-692</td>
<td>-19</td>
<td>-382</td>
<td>-111</td>
<td>-70</td>
<td>-1.133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energia elettrica</td>
<td>-690</td>
<td>-19</td>
<td>-382</td>
<td>-42</td>
<td>-1.133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calore</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-69</td>
<td>-70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altro</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumi e perdite del settore energia</td>
<td>-46</td>
<td>-41</td>
<td>-43</td>
<td>0</td>
<td>-1</td>
<td>-131</td>
<td>-263</td>
<td></td>
</tr>
<tr>
<td>Disponibilità interna</td>
<td>0</td>
<td>-1.211</td>
<td>-860</td>
<td>-46</td>
<td>-69</td>
<td>-531</td>
<td>-2.716</td>
<td></td>
</tr>
<tr>
<td>Consumi finali</td>
<td>0</td>
<td>-1.211</td>
<td>-860</td>
<td>-46</td>
<td>-69</td>
<td>-531</td>
<td>-2.716</td>
<td></td>
</tr>
<tr>
<td>Industria</td>
<td>0</td>
<td>-16</td>
<td>-225</td>
<td>0</td>
<td>-14</td>
<td>-116</td>
<td>-370</td>
<td></td>
</tr>
<tr>
<td>Manifatturiera di base</td>
<td>0</td>
<td>-4</td>
<td>-85</td>
<td>0</td>
<td>-12</td>
<td>-60</td>
<td>-161</td>
<td></td>
</tr>
<tr>
<td>Manifatturiera non di base</td>
<td>0</td>
<td>-12</td>
<td>-139</td>
<td>0</td>
<td>-2</td>
<td>-56</td>
<td>-209</td>
<td></td>
</tr>
<tr>
<td>Trasporti</td>
<td>-1.034</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-29</td>
<td>-1.063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trasporti su strada</td>
<td>0</td>
<td>-1.032</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1.032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altre modalità di trasporto</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-29</td>
<td>-31</td>
<td></td>
</tr>
<tr>
<td>Altri settori</td>
<td>0</td>
<td>-161</td>
<td>-635</td>
<td>-46</td>
<td>-56</td>
<td>-386</td>
<td>-1.283</td>
<td></td>
</tr>
<tr>
<td>Agricoltura e pesca</td>
<td>0</td>
<td>-19</td>
<td>-11</td>
<td>0</td>
<td>3</td>
<td>-34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residenziale</td>
<td>0</td>
<td>-80</td>
<td>-506</td>
<td>-46</td>
<td>-2</td>
<td>-163</td>
<td>-797</td>
<td></td>
</tr>
<tr>
<td>Terziario e Pubblica Amministrazione</td>
<td>0</td>
<td>-62</td>
<td>-118</td>
<td>0</td>
<td>-53</td>
<td>-220</td>
<td>-453</td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Banca dati E2Gov^2 - Sistema Informativo Regionale Ambientale.
5.2. La produzione di energia elettrica da fonti fossili in Liguria

In base ai dati del Bilancio Energetico Regionale 2011 soltanto poco più della metà dell’energia elettrica prodotta dalle tre centrali termoelettriche presenti in regione (508 ktep su 960 ktep prodotti) viene effettivamente consumata all’interno del territorio regionale. Il resto viene esportato verso le altre regioni del Nord-Italia attraverso la rete di trasmissione nazionale ed è all’origine dell’evidente forte divario fra i consumi finali di energia ed i consumi di fonti primarie di energia. Pertanto, fornendo energia elettrica alla regione e al resto d’Italia, le tre centrali della regione (Vado Ligure, Genova, La Spezia) svolgevano un’importante funzione per la Liguria e per il Paese.

La Centrale Termoelettrica di Vado Ligure è costituita (2014) da due vecchie unità a carbone da 330 MW cadauna, ed una più recente unità a ciclo combinato di taglia pari a 800 MW, che utilizza due turbogas alimentati a gas naturale. Il nuovo modulo a ciclo combinato, entrato in esercizio commerciale nel corso del 2007, è stato realizzato sostituendo una vecchia unità alimentata a carbone ed olio combustibile.

La centrale termoelettrica di La Spezia, di proprietà di ENEL SpA ed inaugurata nel 1962, è situata all’interno dell’area urbana nella zona industriale del comune. Alimentata in origine a olio combustibile, è stata trasformata successivamente per bruciare carbone. Con poco meno di 1,3 GW di potenza installata la centrale produce circa il 2,5% del fabbisogno nazionale di energia elettrica. Dopo la più recente riconversione (nel 2001), la centrale oggi (2014) è composta da tre gruppi: due che funzionavano in origine a carbone, sono stati convertiti in Cicli Combinati a metano per 680 MW di potenza installata, mentre il terzo gruppo, da 600 MW, dopo essere stata sottoposta a lavori di adeguamento ambientale, continua a funzionare a carbone.

La Tabella 19 fornisce il quadro di sintesi delle tre centrali termoelettriche presenti sul territorio della Liguria, che forniscono un servizio energetico fondamentale per il Nord-Italia, ma che nel contempo contribuiscono in modo rilevante alle emissioni in atmosfera sia di inquinanti (soprattutto SOx e NOx) che di gas serra (CO2).

La Tabella 20 evidenzia inoltre come, anche per quanto attiene a questo settore, esistano tecnologie destinate, con significativi investimenti, ad evolvere verso una sempre maggiore efficienza e compatibilità ambientale rispetto ai tradizionali gruppi a carbone, peraltro presenti sul territorio regionale (Best Available Technologies - BAT).

Anche in Liguria la situazione è destinata a cambiare gradualmente a seguito delle previste dismissioni dei vecchi gruppi a carbone. A Genova il programma di dismissione della centrale prevede la disattivazione graduale dei tre gruppi, l’ultimo dei quali sarà disattivato nel 2017\(^\text{12}\); a Vado Ligure il progetto di ampliamento che prevede la realizzazione del gruppo a carbone VL6 con tecnologia a vapore USC – UltraSuperCritico ed il rifacimento dei gruppi esistenti a carbone, è attualmente sospeso. L’Azienda ha richiesto una modifica anticipata dell’AIA che prevede solo interventi sui gruppi esistenti al fine di migliorarne le prestazioni ambientali\(^\text{13}\).

\(\text{12}\) A marzo 2017 il Ministero dello Sviluppo Economico ha espresso parere favorevole alla richiesta di dismissione presentata a settembre 2016 da ENEL SpA al fine di procedere con la chiusura definitiva dell’impianto di Genova.

\(\text{13}\) A giugno 2016 il Consiglio di Amministrazione di Terreno Power ha disposto la chiusura definitiva dei due gruppi a carbone della centrale termoelettrica di Vado Ligure, riconoscendo l’assenza delle condizioni necessarie alla riapertura dello stabilimento, posto sotto sequestro dalla Procura di Savona nel Marzo 2014 a causa del mancato rispetto delle prescrizioni dell’Autorizzazione Integrata Ambientale.
A La Spezia si prevede che il gruppo a carbone resti operativo. A seguito di importanti investimenti effettuati nel 2000 per l’ambientalizzazione, il gruppo a carbone risulta munito di mezzi di abbattimento degli inquinanti desolforatore, denitrificatore e precipitatore elettrostatico per il particolato. Nel 2013 la procedura di rilascio della Autorizzazione Integrata Ambientale si è conclusa in fase di conferenza dei servizi, consentendo l’esercizio della centrale nel rispetto delle leggi vigenti (limiti di emissioni più restrittivi di quelli europei). Successivamente, il comune di La Spezia ha sottoscritto una convenzione socio-economica con ENEL che prevede interventi di compensazione da utilizzare in opere pubbliche e la cessione di alcune aree da destinare ad altre attività industriali e portuali.\(^{14}\)

<table>
<thead>
<tr>
<th>Operatore / Nome centrale</th>
<th>Località</th>
<th>Sezioni</th>
<th>Tipo</th>
<th>Combustibile</th>
<th>Potenza nominale MW</th>
<th>Rendimento %</th>
<th>Entrata in servizio</th>
<th>Osservazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tirreno Power SpA</td>
<td>Vado Ligure (Savona)</td>
<td>VL3</td>
<td>Convenzionale a vapore</td>
<td>Carbone</td>
<td>330</td>
<td>38</td>
<td>1971</td>
<td>Chiusura definitiva gruppi a carbone avvenuta nel 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VL4</td>
<td>Convenzionale a vapore</td>
<td>Carbone</td>
<td>330</td>
<td>38</td>
<td>1971</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VL5</td>
<td>Ciclo combinato</td>
<td>Metano</td>
<td>800</td>
<td>54</td>
<td>2007</td>
<td></td>
</tr>
</tbody>
</table>

Pre vista costruzione sezione VL6 a vapore USC (UltraSuperCritical) da 460 MW alimentata a carbone

<table>
<thead>
<tr>
<th>Totale centrale Vado Ligure</th>
<th>1.460</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEL SpA Genova</td>
<td></td>
</tr>
<tr>
<td>GE3</td>
<td></td>
</tr>
<tr>
<td>Convenzionale a vapore</td>
<td>Carbone</td>
</tr>
<tr>
<td>GE4</td>
<td></td>
</tr>
<tr>
<td>Convenzionale a vapore</td>
<td>Carbone</td>
</tr>
<tr>
<td>GE6</td>
<td></td>
</tr>
<tr>
<td>Convenzionale a vapore</td>
<td>Carbone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Totale centrale di Genova</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEL SpA Centrale Eugenio Montale</td>
<td>La Spezia</td>
</tr>
<tr>
<td>SP1</td>
<td></td>
</tr>
<tr>
<td>Ciclo combinato</td>
<td>Metano</td>
</tr>
<tr>
<td>SP2</td>
<td></td>
</tr>
<tr>
<td>Ciclo combinato</td>
<td>Metano</td>
</tr>
<tr>
<td>SP3</td>
<td></td>
</tr>
<tr>
<td>Convenzionale a vapore</td>
<td>Carbone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Totale centrale di La Spezia</th>
<th>1.280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoproduttori e altri</td>
<td>124</td>
</tr>
<tr>
<td>TOTALE IMPIANTI TERMOELETTRICI IN LIGURIA AL 2011</td>
<td>3.164</td>
</tr>
</tbody>
</table>

\(^{14}\) Dal 2014, a seguito della progressiva contrazione della domanda elettrica, i due gruppi a ciclo combinato non sono mai stati chiamati a produrre; nel 2015 ENEL SpA ha annunciato la chiusura definitiva dell’impianto non oltre il 2021 (scadenza Autorizzazione Integrale Ambientale dall’AIA).
La seguente Tabella 21 riporta la sintesi delle emissioni inquinanti in atmosfera generate dal settore energetico in Liguria e che, ricordiamo, sono determinate per poco meno della metà dall’energia elettrica generata in regione ma poi esportata in altre regioni del nord-Italia.

<table>
<thead>
<tr>
<th>Inquinante</th>
<th>Quantità emesse t/anno</th>
<th>Quota rispetto al totale regionale %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOx</td>
<td>8232</td>
<td>69,6</td>
</tr>
<tr>
<td>NOx</td>
<td>6136</td>
<td>17,2</td>
</tr>
<tr>
<td>CO</td>
<td>2942</td>
<td>5</td>
</tr>
<tr>
<td>COVNM</td>
<td>69</td>
<td>0,2</td>
</tr>
<tr>
<td>PM10</td>
<td>127</td>
<td>2,6</td>
</tr>
<tr>
<td>PM2,5</td>
<td>70</td>
<td>1,7</td>
</tr>
</tbody>
</table>

L’inquinante atmosferico maggiormente incidente emesso dal settore energetico (70% rispetto al totale regionale) è l’SOr ossidi di zolfo), la cui forte incidenza in regione è attribuibile all’impiego prevalente di carbone contenente zolfo per la generazione elettrica. Seguono gli NOx (ossidi di azoto) con il 17,2% delle emissioni regionali generate dal settore energetico e il monossido di carbonio (CO) con il 5% del totale regionale emesso dal settore energetico.

Le probabili tendenze per il prossimo futuro delle emissioni inquinanti generate dal settore energetico regionale possono essere quantificate in base a proiezioni economiche e demografiche e a quanto previsto all’anno 2025 da atti di programmazione e strategie, che possono avere influenza sulla qualità dell’aria e sulle misure previste dalle Autorizzazioni Integrate Ambientali. In particolare gli interventi e le misure previste dalle AIA nazionali (tratte dal sito del Ministero della Tutela del Territorio e del Mare) prevedono nello specifico la graduale chiusura entro il 2018 delle unità produttive della Centrale Termoelettrica a carbone Enel di Genova (si veda nota15)secondo il programma di disattivazione del DVA-00_2013-0003485 e la costruzione del nuovo gruppo VL6 a carbone da 460 MWt previsto dal cronoprogramma esposto nel DEC-MIN-00002227 per la centrale Tirreno Power di Vado Ligure.

Se realizzato, l’avviamento dell’unità VL6 prevista nel 2017 comporterebbe emissioni15 aggiuntive di ossidi di azoto pari a 1060 t/anno, di monossido di carbonio pari a circa 1500 t/anno, di ossidi di zolfo pari per circa 1000 t/anno e di 124 t/anno di particelle sospese PM10 (si veda nota15).

La chiusura dei gruppi della Centrale Enel di Genova si tradurrà in una diminuzione di 270 t/anno di ossidi di azoto, di 200 t/anno di ossidi di zolfo, di 4 t/anno di particelle sospese con diametro minore di 10 µm e di 3 t/anno di composti organici volatili.

Relativamente ai Gas Serra responsabili dei cambiamenti climatici e dell’acidificazione degli oceani, l’analisi dei dati del 2008 su scala regionale (vedi Tabella 22) evidenzia in particolare che l’industria dell’energia e della trasformazione delle fonti energetiche (in cui sono comprese le tre centrali termoelettriche liguri) è il macrosettore che apporta le maggiori emissioni di anidride carbonica (60,4% della CO₂ emessa in Liguria).

15 Fonte: Proiezioni delle emissioni ai fini dell’adeguamento del Piano di risanamento della qualità dell’aria.
<table>
<thead>
<tr>
<th>Gas Climalterante</th>
<th>Quantità emesse</th>
<th>Quota rispetto al totale regionale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t/anno</td>
<td>%</td>
</tr>
<tr>
<td>CO₂</td>
<td>9.863.305</td>
<td>60,4%</td>
</tr>
<tr>
<td>CH₄</td>
<td>155</td>
<td>0,4%</td>
</tr>
<tr>
<td>N₂O</td>
<td>61</td>
<td>14,8%</td>
</tr>
</tbody>
</table>

Da notare che i valori delle emissioni di gas climalteranti, in particolare della CO₂ emessi dal settore energetico sono perfino superiori ai totali delle emissioni di CO₂ determinati attraverso il bilancio energetico secondo l’approccio standard IPCC (vedi Capitolo 5.2). Il motivo per questa apparente discrepanza nei dati risiede nel fatto che una quota consistente dell’energia (elettrica e non) generata in Liguria viene ri-esportata verso altre regioni. Pertanto nell’approccio standard IPCC le relative emissioni, sebbene generate in Liguria, sono conteggiate in termini di usi finali (e quindi a carico dei consumatori nelle regioni di destinazione) e non rientrano nelle emissioni assegnate alla Liguria quale regione d’origine.
5.3. La situazione attuale delle fonti rinnovabili

Come indicato in premessa, obiettivo prioritario del presente Piano è fornire le linee di indirizzo per il raggiungimento degli obiettivi al 2020 coerentemente con le Direttive comunitarie e le traiettorie individuate nel Decreto Burden Sharing (DM 15 Marzo 2012), per le cui linee generali si rimanda al Capitolo 2.2.

Al fine di valutare la situazione iniziale e conseguentemente il progredire del raggiungimento degli obiettivi delle traiettorie del Burden Sharing (Tabella 2) occorre fornire un quadro completo della situazione delle fonti rinnovabili in Liguria, basato sui dati disponibili a livello regionale a partire dal Sistema Informativo Regionale Ambientale (SIRA), al fine di completare la “baseline” della pianificazione 2014-2020. I dati (anno 2011\(^{16}\)) vengono presentati secondo le diciture previste dal suddetto Decreto, distinti tra fonti rinnovabili elettriche (FER-E) e fonti rinnovabili termiche (FER-C).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FER - E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solare Fotovoltaico</td>
<td>53,6</td>
<td>43,0</td>
<td>3,7</td>
</tr>
<tr>
<td>Eolico</td>
<td>23,1</td>
<td>48,8</td>
<td>4,2</td>
</tr>
<tr>
<td>Idroelettrico</td>
<td>84,3</td>
<td>221,0</td>
<td>19</td>
</tr>
<tr>
<td>Biogas</td>
<td>19,6</td>
<td>125,0</td>
<td>10,7</td>
</tr>
<tr>
<td>FER - C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomassa</td>
<td>450,7</td>
<td>540,8</td>
<td>46,5</td>
</tr>
<tr>
<td>Solare Termico</td>
<td>15,0</td>
<td>10,5</td>
<td>0,9</td>
</tr>
<tr>
<td>Pompa di calore</td>
<td>1400,0</td>
<td>616,4</td>
<td>53,0 (*)</td>
</tr>
</tbody>
</table>

(*) Calcolato secondo Direttiva Europea 2009/28/CE e relative Linee Guida.

Si riportano inoltre nel seguito ulteriori dati relativi ai consumi 2012 da rinnovabili in Liguria (Tabella 25), ottenuti dalle fonti di informazione come di seguito specificate.

FONTI ELETTRICHE (FER-E):

- Per la fonte solare fotovoltaica si fa riferimento ai dati del “Rapporto Statistico 2012 – Solare Fotovoltaico” del GSE, aggiornati in tempo reale attraverso il sistema informativo geografico di GSE “Atlasole”. E’ opportuno evidenziare che a regime il numero di ore di funzionamento di questi impianti potrebbe essere superiore a quanto indicato nel Rapporto Statistico, in quanto esso tiene conto anche della produzione di impianti entrati in esercizio nel corso dell’anno e quindi la cui produzione si riferisce ad un arco temporale inferiore all’anno. Per questo motivo per la costruzione degli obiettivi per fonte verrà utilizzato un numero convenzionale di ore di funzionamento pari a 1200 ore /anno sulla base di informazioni a cura del Joint Research Centre della Commissione Europea e di GSE (si vedano Figura 15 e Figura 16).

\(^{16}\) Bilancio Energetico regionale più aggiornato a disposizione presso il SIRA.
Per la fonte eolica si è riportato il dato di potenza e produzione energetica di cui al “Rapporto Statistico 2012 – Impianti a fonti rinnovabili” del GSE; il dato di potenza installata è stato quindi aggiornato a partire dall’analisi delle autorizzazioni rilasciate negli ultimi anni. Per la stima della produzione energetica attuale e la costruzione degli obiettivi per fonte si è adottato un numero di ore di funzionamento pari a circa 2000 ore/anno, in coerenza con quanto riportato nel “Rapporto Statistico 2012 – Impianti a fonti rinnovabili” del GSE (Gestore Servizi Energetici) (si veda Tabella 24).
Tabella 24 - Ore equivalenti di utilizzazione degli impianti eolici.
Fonte: “Rapporto Statistico 2012 - Impianti a fonti rinnovabili”, GSE

<table>
<thead>
<tr>
<th>Regione</th>
<th>2011</th>
<th>2012</th>
<th>Variazione %</th>
<th>Regione</th>
<th>2011</th>
<th>2012</th>
<th>Variazione %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piemonte</td>
<td>1522</td>
<td>1643</td>
<td>8,0</td>
<td>Abruzzo</td>
<td>1345</td>
<td>1510</td>
<td>12,3</td>
</tr>
<tr>
<td>Trentino Alto Adige</td>
<td>107</td>
<td>177</td>
<td>66,0</td>
<td>Molise</td>
<td>1661</td>
<td>1942</td>
<td>15,5</td>
</tr>
<tr>
<td>Veneto</td>
<td>1971</td>
<td>1976</td>
<td>0,5</td>
<td>Campania</td>
<td>1496</td>
<td>1332</td>
<td>22,9</td>
</tr>
<tr>
<td>Liguria</td>
<td>2079</td>
<td>2372</td>
<td>14,1</td>
<td>Puglia</td>
<td>1676</td>
<td>2161</td>
<td>29,9</td>
</tr>
<tr>
<td>Emilia Romagna</td>
<td>1520</td>
<td>1552</td>
<td>2,1</td>
<td>Basilicata</td>
<td>1579</td>
<td>1693</td>
<td>7,0</td>
</tr>
<tr>
<td>Toscana</td>
<td>1614</td>
<td>1654</td>
<td>2,5</td>
<td>Calabria</td>
<td>1630</td>
<td>2005</td>
<td>23,0</td>
</tr>
<tr>
<td>Umbria</td>
<td>1514</td>
<td>2120</td>
<td>31,6</td>
<td>Sicilia</td>
<td>1545</td>
<td>1726</td>
<td>11,7</td>
</tr>
<tr>
<td>Lazio</td>
<td>1649</td>
<td>1446</td>
<td>-12,0</td>
<td>Sardegna</td>
<td>1381</td>
<td>1443</td>
<td>4,5</td>
</tr>
<tr>
<td>ITALIA</td>
<td>1563</td>
<td>1863</td>
<td>19,2</td>
<td>ITALIA</td>
<td>1563</td>
<td>1863</td>
<td>19,2</td>
</tr>
</tbody>
</table>

- Per la fonte idroelettrica si riporta la potenza installata di cui al “Rapporto Statistico 2012 – Impianti a fonti rinnovabili” del GSE e come produzione la media della produzione di energia nel periodo 2008-2012 di cui ai Rapporti sulle Fonti Rinnovabili del GSE per i relativi anni, al fine di tenere conto delle variazioni di produttività legate agli effetti delle variazioni climatiche. La potenza installata al 2012 è pari ad 86 MW con una produzione media annua di 234 GWh, da cui deriva un numero medio di ore di funzionamento pari a circa 2700 ore/anno;
- Per il biogas si fa riferimento al dato del “Rapporto Statistico 2012 - Impianti a fonti rinnovabili” del GSE relativo alle bioenergie, da cui risulta che la potenza installata da biogas si attesta intorno ai 21 MW, con una produzione energetica di circa 126 GWh.

FONTI TERMICHE (FER-C):

- Per il solare termico sono stati presi in considerazione i dati a disposizione di Regione Liguria derivanti da bandi di finanziamento regionale, integrati con i dati ENEA relativi alle detrazioni fiscali del 55% per gli anni 2010-2011-2012 (Fonte: Rep55 – Sistema di Reportistica multiano delle dichiarazioni ai fini della detrazione fiscale L n. 296/2006). È da evidenziare che tali dati essendo relativi a soli impianti soggetti a finanziamenti regionali e nazionali sono sottostimati e verranno aggiornati in fase di monitoraggio del PEAR, sulla base delle informazioni derivanti dal monitoraggio del Burden Sharing effettuato dal GSE e di indagini specifiche condotte dalla Regione Liguria sul territorio regionale;
- Pompe di calore: i dati relativi alle pompe di calore sono stati stimati da COAER\(^\text{17}\) a partire dai dati di vendita a livello nazionale, ripartiti a livello regionale sulla base delle indicazioni di studi di settore realizzati da Cresme nel corso del 2009.

Il quadro conoscitivo delle fonti rinnovabili, ed in particolare delle fonti termiche FER-C, sarà oggetto di approfondimenti e validazioni a seguito della pubblicazione degli esiti completi del Censimento ISTAT 2011, di indagini specifiche in atto a livello nazionale su tali fonti, nonché di aggiornamenti in fase di monitoraggio dell’attuazione del PEAR 2014-2020 (per questo aspetto si rimanda alla sezione sul monitoraggio del PEAR contenuta all’interno del Rapporto Ambientale).

\(^{17}\) Co.Aer - Associazione Costruttori Apparecchiature ed Impianti Aeraulici, ora ASSOCLIMA - Costruttori Sistemi di Climatizzazione.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Solare Fotovoltaico</td>
<td>74</td>
<td>89</td>
<td>8</td>
</tr>
<tr>
<td>Eolico</td>
<td>47</td>
<td>94</td>
<td>8</td>
</tr>
<tr>
<td>Idroelettrico</td>
<td>86</td>
<td>234</td>
<td>20</td>
</tr>
<tr>
<td>Biogas</td>
<td>21</td>
<td>126</td>
<td>11</td>
</tr>
</tbody>
</table>

FER - C			
Solare Termico	451	541	47
Biomassa	11	8	0,7
Pompe di calore	1400	612 (*)	53 (*)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Solare Fotovoltaico aggiornato al 10/7/2014. Fonte: Atlasole, GSE</td>
<td>81</td>
<td>97</td>
<td>8</td>
</tr>
<tr>
<td>Eolico aggiornato al 2013. Fonte: Dip. Ambiente, Regione Liguria.</td>
<td>60</td>
<td>120</td>
<td>10</td>
</tr>
</tbody>
</table>

(*) Calcolato secondo Direttiva Europea 2009/28/CE e relative Linee Guida.
6. La strategia energetica regionale

Come evidenziato nei Capitoli precedenti, ed in particolare nelle sezioni dedicate all’analisi del contesto normativo, il Piano Energetico Ambientale Regionale, si sviluppa all’interno di una “roadmap” tracciata dalle Direttive e dalle Comunicazioni Europee che, a partire dal 2008, hanno definito gli obiettivi ed un piano di azione europeo, partendo dalla necessità “di promuovere ulteriormente le energie rinnovabili, dato che il loro uso contribuisce all’attenuazione dei cambiamenti climatici, grazie alla riduzione delle emissioni di gas a effetto serra, allo sviluppo sostenibile, alla sicurezza degli approvvigionamenti e allo sviluppo di un’industria basata sulla conoscenza che crea posti di lavoro, favorisce la crescita economica, stimola la concorrenza e lo sviluppo regionale e rurale.”

L’Unione Europea ha quindi individuato una serie di obiettivi qualitativi e quantitativi per il cui raggiungimento risulta necessario il contributo degli Stati Membri, rilevando che la politica energetica è un elemento cruciale della strategia globale dell’UE in materia di cambiamenti climatici e che in essa una funzione importante spetta alle fonti energetiche rinnovabili e alle tecnologie per l’efficienza energetica. In quest’ottica, diventa quindi fondamentale il ruolo delle Regioni e dei territori per contribuire al raggiungimento dei target 2020 attraverso politiche di sviluppo sostenibile che sappiano, attraverso una visione di medio - lungo periodo, sostenere ed intraprendere azioni volte alla transizione verso un’economia a basse emissioni di carbonio, traducendo i vincoli imposti dalla politica europea in opportunità di crescita e di valorizzazione e tutela ambientale per i singoli territori.

Le politiche energetiche e le opzioni strategiche contenute nel presente Piano nascono quindi in coerenza con le iniziative europee del Pacchetto Clima Energia e con lo scenario nazionale di recepimento delle Direttive e di declinazione degli obiettivi assegnati agli Stati Membri a livello nazionale dal Decreto del Ministero dello Sviluppo Economico 15 Marzo 2012 recante “Definizione e qualificazione degli obiettivi regionali in materia di fonti rinnovabili e definizione delle modalità di gestione dei casi di mancato raggiungimento degli obiettivi da parte delle regioni e delle province autonome (c.d. Burden Sharing)”.

Il Piano individua quindi una serie di obiettivi generali in termini di produzione di energia da fonti rinnovabili e di incremento dell’efficienza energetica negli edifici e nelle imprese, a cui si aggiungono obiettivi di carattere trasversale quali la comunicazione, l’informazione e la formazione sui temi energetici. Per quanto attiene gli obiettivi più strettamente ambientali, il Piano si inserisce nel solco dei target europei per la riduzione (a livello nazionale ed europeo) delle emissioni di gas a effetto serra; esso è inoltre connesso alla salvaguardia e tutela del territorio ligure mediante azioni di sostegno allo sviluppo della cosiddetta filiera corta legno-energia, in grado di generare ricadute positive sulla manutenzione del territorio e conseguente riduzione del rischio di dissesto idrogeologico e di incendi boschivi.

In tal senso il concetto di Burden Sharing stesso deve essere interpretato non solo in termini di conseguimento di un obiettivo numerico strategico, ma anche come opportunità di crescita e sviluppo dei territori che concorrono al raggiungimento degli obiettivi europei condivisi tra gli Stati Membri, da inquadrarsi in un percorso per il miglioramento della qualità della vita dei cittadini di tutta Europa.

Il Piano oltre a contribuire agli obiettivi di pianificazione sui temi ambientali a scala nazionale ed europea, presenta, relativamente ad alcuni temi specifici quali l’efficienza energetica, ricadute dirette positive sulla qualità dell’aria in regione. In tal senso gli obiettivi sui consumi finali e le fonti rinnovabili di energia verranno recepti come scenario all’interno del nuovo “Piano regionale di risanamento e tutela della qualità
dell’aria e per la riduzione dei gas serra”, attraverso il quale sarà possibile monitorare le importanti ricadute ambientali derivanti dalle azioni del PEAR 2014-2020.

Il Piano intende inoltre valorizzare il ruolo dei singoli territori e la partecipazione attiva dei Comuni per la sua attuazione attraverso azioni di sostegno e governance riferite ad iniziative quali il Patto dei Sindaci e allo sviluppo di progetti in ambito Smart Cities.

A tale proposito va ricordato che Regione Liguria nel corso del 2013 ha promosso un Protocollo di Intesa tra Regione stessa, Province, Città Metropolitana e Comuni per l’attuazione del Patto dei Sindaci con l’obiettivo di:

- promuovere ed attuare la politica del Patto dei Sindaci, intendendola nella sua accezione più ampia come strumento strategico di sviluppo locale;
- acquisire e condividere gli elementi conoscitivi funzionali a tale politica ed informatizzazione degli stessi;
- omogeneizzare le metodologie per la preparazione e il monitoraggio dei Piani d’Azione per l’Energia Sostenibile (SEAP);
- facilitare l’attuazione delle azioni previste nei SEAP anche attraverso la ricerca di finanziamenti;
- replicare buone pratiche sul territorio regionale.

Regione Liguria ha inoltre avviato un tavolo istituzionale di confronto con i Comuni capoluogo per sostenere e coordinare le iniziative nell’ambito delle politiche dei singoli territori in materia di Smart Cities considerando tale tema uno dei pilastri della prossima programmazione 2014-2020 in materia di energia, di ricerca e innovazione, mobilità sostenibile, ecc.

Come già anticipato in Premessa, il PEAR 2014-2020 ha inteso coordinare le proprie linee strategiche con le altre programmazioni che possono avere attinenza in materia di energia e su cui Regione Liguria ha definito, o ha in corso di definizione, attività di pianificazione e programmazione.

Di particolare rilievo è il coordinamento del Piano Energetico Ambientale Regionale con la programmazione in materia di ricerca e sviluppo, innovazione, formazione e competitività, considerando fortemente correlate le quattro componenti fondamentali dello sviluppo sostenibile (economica, sociale, ambientale e istituzionale) nella sua definizione originale della Commissione Brundtland (World Commission on Environment and Development, 1987): “uno sviluppo che risponde alle esigenze del presente senza compromettere la capacità delle generazioni future di soddisfare le proprie”.

6.1.Gli obiettivi generali e le linee di sviluppo del PEAR ed il conseguimento dell’obiettivo del Burden Sharing

La strategia energetica regionale al 2020 delineata nel presente Piano (sintesi in Tabella 26) si pone come obiettivi prioritari quelli di promuovere lo sviluppo delle fonti rinnovabili e l’efficienza energetica, in un quadro volto a sostenere la competitività del sistema produttivo regionale e la sostenibilità ambientale.
<table>
<thead>
<tr>
<th>MACRO - OBIETTIVI</th>
<th>OBIETTIVI GENERALI</th>
<th>LINEE DI SVILUPPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.G.1. Efficienza Energetica</td>
<td>EE.1.</td>
<td>Ridurre i consumi energetici del settore residenziale</td>
</tr>
<tr>
<td></td>
<td>EE.2.</td>
<td>Incrementare l’efficienza energetica nei settori terziario, imprese e cicli produttivi</td>
</tr>
<tr>
<td></td>
<td>EE.3.</td>
<td>Incrementare l’efficienza energetica del patrimonio edilizio pubblico e dell’illuminazione pubblica</td>
</tr>
<tr>
<td></td>
<td>EE.4.</td>
<td>Favorire l’installazione di sistemi tecnologici avanzati quali impianti di cogenerazione e trigenerazione, teleriscaldamento e teleraffrescamento</td>
</tr>
</tbody>
</table>

A. Burden Sharing
(conseguimento dell’obiettivo del DM 15/3/2012 : 14,1%)

O.G.2. Fonti rinnovabili (Elettriche e Termiche)	FER.1.	Promuovere la realizzazione di impianti fotovoltaici su edifici ed in aree industriali o degradata dal punto di vista ambientale e paesaggistico
	FER.2.	Favorire l’installazione di impianti eolici attraverso la semplificazione delle procedure autorizzative
	FER.3.	Sostenere l’installazione di impianti di piccola taglia nel settore idro-elettrico e la rriattivazione di centraline esistenti
	FER.4.	Incrementare la produzione energetica da biogas da RSU
	FER.5.	Sviluppare la ricerca nei settori tecnologici correlati alle fonti rinnovabili ed all’efficienza energetica
	FER.6.	Favorire lo sviluppo delle Smart-grid
	FER.7.	Sostenere la diffusione di impianti a biomassa di piccola e media taglia attraverso lo sviluppo della filiera legno-energia e l’utilizzo della biomassa locale
	FER.8.	Incrementare il ricorso alla tecnologia solare termica
	FER.9.	Promuovere l’impiego delle pompe di calore nel settore civile

B. Sviluppo economico

| | SE.2. | Sostenere lo sviluppo e la qualificazione nei settori edile ed impiantistico (efficienza energetica e risparmio energetico) |

C. Comunicazione

O.G.4. Informazione e formazione	IF.1.	Promuovere la formazione professionale e l’alta formazione nel settore energetico anche con riferimento a nuove figure professionali ed ai giovani
	IF.2.	Coinvolgere i portatori di interesse nel settore dell’energia in tutte le fasi di attuazione del Piano
	IF.3.	Realizzare azioni di sensibilizzazione rivolte ai cittadini

I tre macro obiettivi del Piano (Obiettivo Burden Sharing, Sviluppo Economico e Comunicazione) vengono declinati in quattro obiettivi generali e relative linee di sviluppo (EE, FER, SE, IF), per la descrizione delle quali si rimanda agli specifici Capitoli 6.2, 6.3 e 6.4. A loro volta per ciascuna linea di sviluppo vengono dettagliate al Capitolo 6.5 le azioni regionali previste ai fini dell’attuazione del PEAR.

Per quanto riguarda il macro-obiettivo A si riporta nel seguito una sintesi dello scenario complessivo di Piano ai fini del conseguimento dell’obiettivo del DM 15 Marzo 2012.

<table>
<thead>
<tr>
<th>TIPOLOGIA DI FONTE RINNOVABILE (FER-E o FER-C)</th>
<th>Situazione 2011</th>
<th>Scenaro di Piano</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------------------------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Fotovoltaico</td>
<td>53,6</td>
<td>3,7</td>
</tr>
<tr>
<td>Eolico</td>
<td>23,1</td>
<td>4,2</td>
</tr>
<tr>
<td>Idroelettrico</td>
<td>84,3</td>
<td>19</td>
</tr>
<tr>
<td>Biogas</td>
<td>19,6</td>
<td>10,7</td>
</tr>
<tr>
<td>Biomassa</td>
<td>450,7</td>
<td>46,5</td>
</tr>
<tr>
<td>Solare Termico</td>
<td>15,0</td>
<td>0,9</td>
</tr>
<tr>
<td>Pompe di calore</td>
<td>1400</td>
<td>53,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) Calcolato secondo Direttiva Europea fonti rinnovabili (2009/28/CE) e relative linee guida.

Parallelamente la Regione intende agire al fine di favorire l’efficienza energetica, con particolare riferimento ai settori civile (pubblico e privato), dell’illuminazione pubblica e delle imprese e dei cicli produttivi, capitalizzando e potenziando mediante opportune politiche di settore i risultati delle politiche avviate nel corso degli ultimi anni (per il dettaglio delle linee di intervento sul settore dell’efficienza energetica si veda il Capitolo 6.2).

Al fine di verificare gli impatti delle politiche di efficienza energetica del presente Piano si procede a studiare gli scenari di riferimento riportati nel DM 15 Marzo 2012: la Tabella 8 in Allegato 1 del Decreto riporta la traiettoria dei Consumi Finali Lordi (CFL) regionali a partire dall’anno iniziale di riferimento fino al 2020 (Tabella 28). I valori regionali di CFL per l’anno di riferimento sono stati calcolati aggregando le tipologie di consumi regionali relativi agli anni più recenti (Allegato 2, Par 4 - DM 15 Marzo 2012):

- **CFL – consumi elettrici**: consumo finale netto regionale (Fonte: Terna SpA) come media nel periodo 2006-2010 sommato a perdite di rete e consumi ausiliari di centrale (ripartiti tra le Regioni in base ai consumi);

I CFL regionali al 2020 sono stati invece ottenuti a partire dallo scenario efficiente del Piano di Azione Nazionale (PAN) per le Energie Rinnovabili, utilizzando fattori di ripartizione basati sui consumi storici e le traiettorie tra l’anno di riferimento ed il 2020 sono state calcolate prevedendo una crescita lineare.
La Tabella 28, come precisato dal Decreto, assume che gli effetti delle azioni di efficienza energetica previste dal PAN sugli usi finali siano distribuiti sulle regioni in proporzione ai loro consumi storici, lasciando queste libere di sviluppare proprie politiche a favore dell’efficienza, i cui risultati troveranno riscontro nella consuntivazione dei propri consumi finali.

Al fine di prevenire nelle stime eventuali sovrapposizioni di effetti dovuti alle politiche nazionali e a quelle regionali, nel presente Piano si è deciso di effettuare un’analisi degli impatti delle azioni di efficienza energetica a partire dallo scenario di riferimento “Business as usual” (BAU) del PAN (anziché dallo scenario di “efficienza energetica supplementare” indicato nel Decreto) applicandovi quindi gli effetti dovuti all’attuazione sul territorio regionale delle linee strategiche in materia di efficienza energetica previsti nel presente Piano al fine del calcolo del CFL regionale al 2020.

Considerato che lo scenario dei CFL al 2020 in Tabella 28 è stato costruito, come sopra esposto, ripartendo il CFL nazionale di 133.042 ktep previsto nello scenario efficiente del Piano sulla base dei consumi storici delle Regioni, si è cercato di ricostruire lo scenario energetico regionale in condizioni BAU a partire dallo scenario di riferimento del PAN applicando gli stessi criteri di ripartizione del DM 15 Marzo 2012 al CFL di 145.566 ktep.

<table>
<thead>
<tr>
<th>Regioni</th>
<th>Anno iniziale riferimento</th>
<th>2012</th>
<th>2014</th>
<th>2016</th>
<th>2018</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abruzzo</td>
<td>2.838</td>
<td>2.741</td>
<td>2.746</td>
<td>2.752</td>
<td>2.757</td>
<td>2.762</td>
</tr>
<tr>
<td>Basilicata</td>
<td>1.153</td>
<td>1.115</td>
<td>1.118</td>
<td>1.120</td>
<td>1.123</td>
<td>1.126</td>
</tr>
<tr>
<td>Calabria</td>
<td>2.519</td>
<td>2.435</td>
<td>2.441</td>
<td>2.447</td>
<td>2.452</td>
<td>2.458</td>
</tr>
<tr>
<td>Liguria</td>
<td>3.006</td>
<td>2.903</td>
<td>2.909</td>
<td>2.916</td>
<td>2.921</td>
<td>2.927</td>
</tr>
<tr>
<td>Marche</td>
<td>3.622</td>
<td>3.495</td>
<td>3.500</td>
<td>3.504</td>
<td>3.509</td>
<td>3.613</td>
</tr>
<tr>
<td>Molise</td>
<td>644</td>
<td>622</td>
<td>624</td>
<td>626</td>
<td>626</td>
<td>628</td>
</tr>
<tr>
<td>Sicilia</td>
<td>7.716</td>
<td>7.467</td>
<td>7.488</td>
<td>7.509</td>
<td>7.530</td>
<td>7.551</td>
</tr>
<tr>
<td>TAA-Bolzano</td>
<td>1.361</td>
<td>1.314</td>
<td>1.316</td>
<td>1.319</td>
<td>1.321</td>
<td>1.323</td>
</tr>
<tr>
<td>TAA-Trento</td>
<td>1.419</td>
<td>1.370</td>
<td>1.372</td>
<td>1.375</td>
<td>1.377</td>
<td>1.379</td>
</tr>
<tr>
<td>Umbria</td>
<td>2.670</td>
<td>2.577</td>
<td>2.581</td>
<td>2.586</td>
<td>2.589</td>
<td>2.593</td>
</tr>
<tr>
<td>Valle d’Aosta</td>
<td>568</td>
<td>548</td>
<td>548</td>
<td>548</td>
<td>549</td>
<td>560</td>
</tr>
<tr>
<td>Totale</td>
<td>136.712</td>
<td>132.049</td>
<td>132.258</td>
<td>132.546</td>
<td>132.704</td>
<td>132.842</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Riscaldamento e raffrescamento</td>
<td>66.499</td>
</tr>
<tr>
<td></td>
<td>61.185</td>
</tr>
<tr>
<td>Elettricità</td>
<td>35.034</td>
</tr>
<tr>
<td></td>
<td>32.227</td>
</tr>
<tr>
<td>Trasporti</td>
<td>38.544</td>
</tr>
<tr>
<td></td>
<td>33.972</td>
</tr>
<tr>
<td>Consumo Finale Lordo di Energia</td>
<td>145.566</td>
</tr>
<tr>
<td></td>
<td>133.042</td>
</tr>
</tbody>
</table>

Dai calcoli effettuati risulta che in assenza di interventi di efficienza energetica la proiezione dei CFL della Liguria al 2020 ammonterebbe a 3.203 ktep.
Occorre tuttavia tenere presente che i dati contenuti nel Bilancio Energetico Regionale di cui al Capitolo 5.1 configurano un Consumo Finale Lordo al 2011 pari a 2.634 ktep, ben inferiori rispetto a quanto riportato in Tabella 28 per l’anno iniziale di riferimento e per il 2012 (ciò in parte è dovuto allo stralcio dei consumi tradizionalmente inclusi nei bunkeraggi). Proiettando al 2020 tale valore sulla base degli andamenti (riportati a livello regionale) dello scenario di riferimento BAU del PAN, si ottiene uno scenario BAU dei Consumi Finali Lordi al 2020 pari a 2.972 ktep.

L’attuazione delle strategie regionali in materia di efficienza energetica di cui al Capitolo 6.2, consentono di stimare una riduzione dei consumi finali lordi pari a circa 332 ktep (trascurando le variazioni di perdite di rete e autoconsumi di centrale), che porterebbero ad un CFL di circa 2.640 ktep.

<table>
<thead>
<tr>
<th>[ktep]</th>
<th>Scenario BAU</th>
<th>Scenario di Efficienza Energetica</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFL 2020 - Liguria</td>
<td>2.972</td>
<td>2.640</td>
</tr>
</tbody>
</table>

Tabella 31 - CFL regionali nello scenario BAU e di Efficienza Energetica al 2020 [ktep]. Elaborazioni su PAN.

Sulla base degli esiti degli scenari di cui alla Tabella 25 ed alla Tabella 31 risulta pertanto, in conformità con quanto previsto dal DM 15 Marzo 2012:

<table>
<thead>
<tr>
<th>Obiettivi di Piano al 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo Finale Lordo</td>
</tr>
<tr>
<td>Consumi Finali da Fonti Rinnovabili</td>
</tr>
<tr>
<td>% Decreto Burden Sharing</td>
</tr>
</tbody>
</table>

6.2. L’efficienza energetica: il potenziale, gli obiettivi e gli strumenti

Il quadro normativo a livello comunitario sul tema dell’efficienza energetica è in continua evoluzione e promuove strumenti sempre più efficaci al fine di raggiungere gli obiettivi di risparmio al 2020. La Direttiva 2010/31/UE (si veda Capitolo 2.1) riprende i temi trattati nella precedente Direttiva 2002/91/CE, approfondendoli ed introducendo nuovi adempimenti per gli Stati Membri, finalizzati alla realizzazione di edifici sempre più efficienti (“nearly zero buildings”), all’aumento di efficacia del processo di certificazione energetica degli edifici e delle ispezioni degli impianti di riscaldamento e condizionamento dell’aria.

Il Piano d’Azione Europeo per l’Efficienza Energetica 2011 sottolinea il ruolo dell’efficienza quale strumento imprescindibile per il raggiungimento dell’obiettivo di riduzione dei consumi energetici del 20% e l’uso efficiente delle risorse.

La Direttiva 2012/27/UE (si veda Capitolo 2.1) promuove l’efficienza energetica degli edifici al fine di garantire il conseguimento dell’obiettivo dell’Unione entro il 2020 e di gettare le basi per ulteriori
miglioramenti dell’efficienza energetica al di là di tale data. La Direttiva pone particolare attenzione all’edilizia pubblica, considerando il ruolo esemplare che può avere sull’opinione pubblica, e sulla trasparenza della comunicazione agli utenti del proprio consumo energetico effettivo.

In termini di obiettivi quantitativi, il programma di promozione dell’efficienza energetica al 2020 previsto dal PAEE 2014 si propone di:

- risparmiare 15,5 Mtep di energia finale annui (20 Mtep di energia primaria), raggiungendo al 2020 un livello di consumi circa il 24% inferiore rispetto allo scenario di riferimento europeo;
- evitare l’emissione di circa 55 milioni di tonnellate di CO2 l’anno;
- risparmiare circa 8 miliardi di euro l’anno di importazioni di combustibili fossili.

Anche la Strategia Energetica Nazionale (SEN) del marzo 2013 sottolinea l’importanza dell’efficienza energetica ponendola come “prima priorità” per il raggiungimento di tutti gli obiettivi di risparmio, quali la riduzione dei costi energetici, delle emissioni e dell’impatto ambientale, il miglioramento della sicurezza, l’indipendenza dell’approvvigionamento e lo sviluppo della crescita economica. Nella SEN 2013 vengono inoltre individuati tra i settori con il maggiore potenziale di risparmio il settore civile, della pubblica amministrazione ed industriale.

Ai fini del conseguimento degli obiettivi comunitari e nazionali, è rilevante il ruolo che possono ricoprire i territori ed in particolare le Regioni nella promozione delle tecnologie, nell’adozione di politiche incentivanti attraverso la programmazione dei fondi e nella sensibilizzazione degli utenti.

La Regione Liguria in questi anni ha avviato un percorso finalizzato a promuovere ed incentivare l’efficienza energetica, attraverso il recepimento degli indirizzi emanati a livello comunitario e nazionale e alla pubblicazione di bandi, con una particolare attenzione al settore civile e delle imprese.

Tra gli strumenti messi in atto, oltre alle politiche incentivanti di cui al Capitolo 4.3, si distingue la certificazione energetica degli edifici, che è stata introdotta attraverso la pubblicazione della LR n. 22/2007 e ss.mm.ii. e che rappresenta uno strumento di sensibilizzazione ed informazione rivolto non solamente agli utenti finali, ma a tutti coloro che sono coinvolti nel processo (professionisti, associazioni di categoria,..).

Attualmente, alla luce degli obblighi derivanti dal Decreto “Burden Sharing”, è fondamentale consolidare l’impegno regionale sul tema dell’efficienza energetica: l’obiettivo regionale al 2020 del 14,1% da fonti rinnovabili è infatti calcolato sui consumi finali lordi (si veda Capitolo 2.2); pertanto agire sul denominatore riducendo i consumi finali regionali è condizione indispensabile per ottemperare agli impegni fissati dal Decreto.

A tal fine la Regione promuoverà specifiche politiche volte all’efficienza energetica nei settori civile, nelle imprese e nei cicli produttivi, oltre che nell’edilizia, nell’illuminazione pubblica ed attraverso la cogenerazione ed il teleriscaldamento.
Le azioni di efficienza energetica proposte nel presente Piano si pongono come obiettivo una riduzione dei consumi finali lordi al 2020 di 332 ktep che consente di raggiungere un Consumo Finale Lordo al 2020 di 2.640 ktep, secondo quanto previsto dal Decreto Burden Sharing.
È opportuno evidenziare che si tratta di azioni che attualmente non vengono messe in atto secondo la periodicità che sarebbe prevista per un corretto ricambio tecnologico degli impianti ed una opportuna manutenzione dei componenti edilizi.
Ciò è confermato dalle informazioni relative alle domande di detrazione fiscale del 55% ricevute da Enea nel periodo 2010-2012 (riportate in Tabella 33), che risultano di entità contenuta soprattutto per quegli interventi che avrebbero impatti significativi in termini di riduzione dei consumi, quali gli interventi sulle strutture verticali opache.

<table>
<thead>
<tr>
<th>Tipologia intervento</th>
<th>Anno</th>
<th>N° richieste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strutture Verticali opache</td>
<td>2010</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>118</td>
</tr>
<tr>
<td>Strutture Orizzontali opache</td>
<td>2010</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>236</td>
</tr>
<tr>
<td>Infissi</td>
<td>2010</td>
<td>12419</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>9323</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>9548</td>
</tr>
<tr>
<td>Solare termico</td>
<td>2010</td>
<td>806</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>478</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>354</td>
</tr>
<tr>
<td>Caldaia a condensazione</td>
<td>2010</td>
<td>2258</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>1554</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>1297</td>
</tr>
</tbody>
</table>

Le ragioni di questo andamento sono probabilmente connesse all’attuale contesto economico, che se da un lato può portare ad una maggiore attenzione alla spesa energetica da parte degli utenti, dall’altra disincentiva gli investimenti ed il ricorso a tecnologie innovative (si veda il Capitolo 3.3). Si tratta inoltre di interventi caratterizzati da tempi di ritorno lunghi e che richiedono un cambiamento della sensibilità dei cittadini e dei professionisti sui temi energetici ed una maggiore capacità di investimento da parte delle famiglie e delle imprese.

Dal rapporto dell’ENEA sulle detrazioni fiscali del 55% per la riqualificazione energetica del patrimonio edilizio nell’anno 2012, in Liguria le detrazioni fiscali hanno riguardato principalmente edifici ad uso residenziale, con superficie inferiore ai 250 m² e di altezza superiore ai tre piani. L’intervento maggiormente eseguito è la sostituzione degli infissi (81% delle pratiche), mentre la sostituzione del generatore di calore con la caldaia a condensazione ha riguardato l’11% delle richieste. A seguire gli interventi relativi all’installazione di pannelli solari termici (3%), di pompe di calore (2%), l’isolamento di strutture opache orizzontali (2%) e l’isolamento di strutture opache verticali (1%). Le altre tipologie di interventi detraibili (impianti geotermici e installazione caldaie a biomassa) riguardano una porzione non significativa delle richieste.
Analizzando il costo del kWh risparmiato, in ragione delle varie tipologie di intervento si evidenzia quali tipologie più efficienti l’installazione di pannelli solari termici, la sostituzione del generatore di calore con caldaia a condensazione e l’installazione della pompa di calore. La sostituzione degli infissi, sia in termini di risparmio, che in termini di costo per kWh risparmiato risulta economicamente meno conveniente. Il dato relativo alle caldaie a biomassa, non risulta in questo caso significativo, in quanto frutto di un ridottissimo numero di interventi (<1%).
6.2.1.1 Il settore residenziale

La Regione Liguria, al fine di promuovere l’efficienza energetica nel settore civile (responsabile di circa il 50% dei consumi finali regionali), ha avviato in questi anni iniziative di natura normativa per il recepimento degli indirizzi emanati a livello comunitario e nazionale.

Con la LR n. 22/2007 “Norme in materia di energia” e ss.mm.ii. e relativi regolamenti attuativi la Regione Liguria ha anticipato la pubblicazione delle Linee Guida nazionali ed ha avviato il processo di certificazione energetica degli edifici. La Regione ha gestito il processo di certificazione degli edifici istituendo l’elenco dei certificatori liguri, definendo i criteri di accesso e regolamentando i corsi di formazione, ha creato una banca dati regionale per la gestione dei certificati energetici ed ha provveduto ad aggiornare gli ambiti e le modalità di applicazione dei requisiti minimi per le nuove costruzioni e per gli edifici esistenti sottoposti a ristrutturazione integrale o parziale. Per il dettaglio degli aspetti normativi si rimanda al Capitolo 2.3.

Il processo di certificazione energetica ha innescato una serie di meccanismi destinati ad incidere profondamente sulla percezione dell’importanza dell’efficienza energetica da parte del cittadino e sulla necessità da parte del professionista di integrare i criteri legati al contenimento del consumo energetico nella progettazione e realizzazione del sistema edificio-impianto.

Si tratta di processi con ricadute nel medio-lungo termine, i cui effetti saranno pienamente visibili nei prossimi anni anche perché il parco edilizio esistente, che è causa della maggior parte dei consumi energetici del settore civile, rappresenta il contesto sul quale è più difficile intervenire.

Dal punto di vista della fattibilità tecnico/economica infatti, è molto più semplice la progettazione e la realizzazione di edifici nuovi ad alta efficienza rispetto alla ristrutturazione di strutture esistenti.

La progettazione di nuovi edifici i professionisti non incontrano le stesse difficoltà presenti nel caso delle ristrutturazioni integrali o parziali, perché, non avendo vincoli connessi ad una struttura già esistente, possono prevedere già in fase preliminare le soluzioni tecnologiche ed i materiali più innovativi, ottimizzando la prestazione energetica del sistema edificio-impianto; in questi casi è spesso possibile raggiungere livelli di efficienza superiori a quelli definiti dalla normativa regionale vigente senza richiedere un significativo aumento dei costi di realizzazione.

Il RR n. 6/2012 e ss.mm.ii. definisce una serie di requisiti minimi che riguardano sia gli edifici di nuova costruzione che quelli esistenti sottoposti a ristrutturazione integrale o parziale.

Per quanto riguarda il parco edilizio esistente, il RR n. 6/2012 e ss.mm.ii. definisce una serie di parametri che devono essere soddisfatti in caso di ristrutturazione integrale o parziale; la filosofia seguita nel Regolamento, in linea con gli indirizzi nazionali, prevede che, nel momento in cui si interviene su un qualsiasi elemento del sistema edificio-impianto (sia per esigenze funzionali che per migliorare l’efficienza energetica o il comfort dell’abitazione), tale elemento debba essere messo a norma, rispettando, a seconda del tipo di intervento, i limiti di trasmissione termica, il valore limite del fabbisogno di energia primaria o valori di rendimento limite dell’impianto termico.

I nuovi requisiti sono il risultato dell’applicazione a livello nazionale del quadro metodologico comparativo pubblicato dalla Commissione Europea per calcolare i livelli ottimali in funzione dei costi delle prestazioni energetiche degli edifici e degli elementi edilizi (art. 5 della Direttiva 2010/31/UE).

Ai fini della valutazione del risparmio energetico conseguibile al 2020 mediante interventi di efficienza energetica nel settore residenziale, è stato elaborato un modello di calcolo basato sulla classificazione del parco edilizio regionalispetto ai seguenti parametri:

- geometria del fabbricato in cui si trova l’abitazione;

18 I requisiti minimi previsti dal Regolamento per gli edifici esistenti e di nuova costruzione saranno aggiornati sulla base dell’evoluzione della normativa nazionale.
• tipologia di impianto termico;
• livello di isolamento termico.

Al parco edilizio ligure, così classificato, sono stati applicati alcuni interventi migliorativi nell’ipotesi che essi vengano messi in atto secondo la periodicità che sarebbe prevista per un corretto ricambio tecnologico degli impianti ed una opportuna manutenzione dei componenti edilizi applicati al periodo di riferimento 2014 – 2020; gli interventi considerati sono:

1. installazione di valvole termostatiche e di contabilizzatori di calore e sostituzione del generatore di calore con caldaia a condensazione e ottimizzazione del sistema di regolazione;
2. installazione pannelli solari termici;
3. isolamento delle pareti;
4. isolamento dei solai e delle coperture;
5. sostituzione dei serramenti.

Per ogni intervento, è stato ipotizzato un fattore di applicazione relativo alla percentuale di edifici interessati, dedotto considerando la vita utile dell’impianto o l’intervallo medio per il rifacimento del componente.

L’applicazione dei suddetti interventi permetterebbe di conseguire un risparmio energetico annuo di circa 100 ktep.

Occorre, però, tenere in considerazione l’elevato numero di seconde case presenti nelle aree costiere ed interne del territorio regionale, per le quali difficilmente vengono programmati e realizzati interventi inerenti il miglioramento delle prestazioni energetiche degli immobili.

Fondamentale per il raggiungimento degli obiettivi di risparmio sarà l’azione di monitoraggio e confronto con gli operatori del settore, che consentirà un costante aggiornamento delle previsioni e degli strumenti messi in atto per il loro perseguimento, anche in considerazione delle possibili evoluzioni degli scenari tecnologici.

Oltre agli interventi relativi alla riqualificazione del sistema edificio – impianto, un consistente risparmio energetico nel settore residenziale potrà essere legato al rinnovamento del parco delle apparecchiature elettriche delle abitazioni. Il quadro normativo europeo, infatti, incoraggia la sostenibilità ambientale delle apparecchiature che consumano energia, per tutto il ciclo di vita, compreso lo smaltimento: a fine 2009 è stata emanata la Direttiva 2009/125/CE che interessa tutte le apparecchiature che consumano energia, ovvero “ogni prodotto che, dopo l'immissione sul mercato e/o la messa in servizio, dipende da un input di energia (energia elettrica, combustibili fossili ed energie rinnovabili) per funzionare” e tramite la Direttiva 2010/30/UE è stata introdotta l’etichettatura energetica dei dispositivi.

Si stima che in ogni appartamento residenziale, siano presenti almeno un frigorifero, una lavatrice ed un televisore, mentre nel 60% dei casi è presente anche una lavastoviglie. Al 2011, la classe energetica media per tipologia di elettrodomestico era così suddivisa:

• frigoriferi, lavatrici e televisori: C/D;
• lavastoviglie: B/C.

Dalle stime effettuate si ipotizza che al 2020 tutti gli elettrodomestici saranno almeno in classe A.

Attraverso la Legge n. 232 dell’11 dicembre 2016 (Legge di bilancio 2017) la detrazione del 50% su una spesa massima di 10 mila euro per l’acquisto di mobili dedicati all’arredo di edifici oggetto di ristrutturazione è stata prorogata fino al 31 dicembre 2017. Considerando i risultati delle indagini di mercato reperibili in letteratura, è possibile stimare un consumo medio per ogni elettrodomestico e per la Regione Liguria il consumo complessivo è stimabile in circa 838 GWh.

A partire dai dati di vendita riferiti al mercato italiano tra il 2001 ed il 2011, analizzando il possibile risparmio conseguibile a fronte del rinnovamento del parco elettrodomestici in Liguria negli edifici residenziali abitati, al 2020 si ottiene un risparmio pari a 63 ktep per gli elettrodomestici.

Analogamente a quanto disposto per gli elettrodomestici, la Commissione Europea, con la Direttiva Europea 2005/32/CE, sostituita dalla 2009/125/CE ed i relativi regolamenti, ha istituito nuovi criteri per la progettazione delle lampadine domestiche che hanno condotto al graduale ritiro dal mercato delle lampadine ad incandescenza tradizionali.

Da una stima effettuata dall’ENEA applicata alla Regione Liguria al 2011, risulta che in ambito residenziale il 65% delle lampade installate sono ad incandescenza, il 22% fluorescenti compatte ed il restante 13% sono fluorescenti lineari ed alogene; solo lo 0,01% delle lampade sono a led. La potenza totale installata risulta pari a 531 MW.

Ipotizzando il rinnovo del parco delle lampadine negli edifici abitati della Regione tra il 2011 ed il 2020 si stima un risparmio di circa 43 ktep/anno.

Le analisi sopra riportate consentono di stimare un potenziale risparmio energetico complessivo al 2020 pari a circa 206 ktep/anno.

Azioni per l’efficienza energetica nel settore residenziale

La Regione Liguria ai fini del conseguimento dell’obiettivo globale assegnato dal DM 15 Marzo 2012, interverrà promuovendo azioni finalizzate all’incremento dell’efficienza energetica nel settore civile proseguendo e rafforzando le iniziative di natura normativa già avviate a partire dal 2007 per il recepimento degli indirizzi emanati a livello comunitario e nazionale.

Attraverso la LR n. 32/2016 la Regione Liguria ha recepito i DM 26/06/2015, che aggiornano sia le procedure per il calcolo dei requisiti minimi delle nuove costruzioni e di quelle sottoposte a ristrutturazione/riqualificazione energetica, sia il sistema di classificazione ai fini dell’attestazione energetica degli edifici. Il nuovo sistema per il calcolo dei requisiti minimi si basa sulla “metodologia dell’edificio di riferimento”, che è rappresentato da un edificio geometricamente identico a quello di progetto o reale (in termini di geometria, orientamento, ubicazione territoriale, destinazione d’uso e situazione al contorno) ed avente le caratteristiche termiche richieste dagli standard prestazionali introdotti attraverso i DM 26/06/2015. La classificazione energetica introdotta dai DM 26/06/2015 definisce nuove classi di alta efficienza (A4, A3, A2), per recepire le indicazioni della Direttiva 2010/31/UE che prevede standard “Nearly Zero Energy Buildings (NZE) a partire dal 31/12/2018 per gli edifici pubblici e privati. Secondo il nuovo sistema di classificazione, a partire dalle date sopra indicate un edificio di nuova costruzione o sottoposto a ristrutturazione importante per essere a norma dovrà appartenere almeno alla classe energetica A1.

21 Pubblicati dalla società statistica GFK
22 “Analisi dello stato dell’arte nazionale ed internazionale dei sistemi integrati di illuminazione naturale/artificiale in relazione all’involucro edilizio nel caso di edifici del terziario e abitativi, ai fini di un loro impiego nell’ambito della certificazione energetica degli edifici”, ENEA Report 2009
Per garantire la qualità degli interventi di efficienza energetica sul parco edilizio esistente la Regione Liguria potrà intensificare i controlli in corso d’opera (conformità alle relazioni di progetto DM 26/06/2015 “Schema e modalità di riferimento per la compilazione della relazione tecnica di progetto ai fini dell’applicazione delle prescrizioni e dei requisiti minimi di prestazione energetica negli edifici”) e delle verifiche sugli APE, per assicurare la correttezza della classe energetica raggiunta grazie agli interventi di efficienza.

A tale scopo, la Regione Liguria definisce piani e procedure per i controlli sugli APE, estendendo il campione oggetto di verifica al 2% degli attestati trasmessi alla Banca Dati regionale (SIAPEL) in ogni anno solare, così come previsto dall’art. 5 del DM 26/06/2005 “Adeguatezza delle Linee Guida Nazionali per la certificazione energetica degli edifici”.

La Regione Liguria inoltre, al fine di potenziare il quadro conoscitivo del parco edilizio ligure, provvederà ad analizzare i dati contenuti negli APE, che riguardano il sistema involucro-impianto degli edifici oggetto di certificazione ed estratti dal SIAPEL.

La Regione Liguria promuoverà inoltre la diffusione di strumenti finalizzati a favorire interventi di riquilificazione ed efficientamento energetico riguardanti sia l’involucro sia gli impianti e, ove possibile, la building automation.

Tra questi la diffusione del partenariato pubblico-privato, attraverso il meccanismo delle ESCo, che consente di superare l’impatto dell’investimento iniziale da parte del privato cittadino e dell’ente locale.

La Regione in tal senso promuoverà la diffusione di iniziative volte a divulgare la cultura dell’efficienza e del risparmio energetico, quali il programma “Condomini Intelligenti”.

Tali azioni potranno comportare un diretto beneficio sulla qualità dell’aria sul territorio regionale, con impatti positivi sulla qualità della vita e sulla salute dei cittadini, che verranno quantificati in termini di scenario di Piano nell’ambito del Piano regionale di risanamento e tutela della qualità dell’aria e per la riduzione dei gas serra.

6.2.1.2.Il settore terziario

L’analisi energetica del terziario è complessa a causa della significativa eterogeneità del settore, che comprende tra gli altri centri commerciali, alberghi, ospedali, pubblica amministrazione, ...

Spesso inoltre non sono disponibili dati dettagliati per i singoli comparti ed è necessario porre cautela nell’utilizzo di dati aggregati (riferiti a più comparti) per la valutazione del risparmio raggiungibile.

Al fine di stimare le caratteristiche energetiche di questo settore, che nel suo insieme assorbe oltre il 36% dei consumi del civile ed il 18% del totale (si veda Tabella 15), l’analisi è stata condotta distinguendo i comparti per i quali è stato possibile reperire dati specifici (in particolare centri commerciali, alberghi e strutture ospedaliere) ed accorpando i restanti in un unico sottosettore denominato “terziario non specializzato”. I consumi del settore commerciale e turistico, sono stati reperiti a partire da un’indagine svolta dalla Provincia di Genova relativa all’anno 2005 e dal Bilancio Energetico Regionale del 2011. I dati relativi ai consumi energetici degli ospedali sono stati reperiti dalle misurazioni effettuate nell’ambito della Convenzione per il “MultiServizio Tecnologico”.

Per ciascun settore, a partire dai consumi energetici del 2011 e sono stati costruiti due scenari al 2020: lo scenario “Business As Usual” (BAU) che indica l’evoluzione dei consumi in assenza di interventi di efficenza energetica e lo scenario di “efficienza” che risente dell’impatto di azioni di efficienza energetica. La differenza tra i consumi nello scenario “Business As Usual” e nello scenario di “efficienza” costituisce il risparmio energetico conseguibile al 2020.

Per ciascuno dei sotto settori sopra elencati è stata condotta un’analisi dei consumi per gli usi ritenuti più significativi ed è stato costruito uno scenario di “efficienza” sulla base degli interventi che è possibile.

23 Questa metodologia, messa a punto da IRE SpA nell’ambito dell’attività di redazione del SEAP del Comune di Genova, è stata estesa all’intero territorio regionale
prevedere nell’ipotesi di un corretto ricambio tecnologico dei componenti e sulla spinta all’innovazione tecnologica derivante dalle politiche europee, nazionali e regionali.

Per quanto riguarda i centrri commerciali i consumi energetici derivano principalmente dal riscaldamento, dal raffrescamento, dall’illuminazione e dalla generazione del freddo (per i centri commerciali che prevedono la vendita di alimenti). Questi ultimi risultano particolarmente significativi in quanto costituiscono quasi il 50% dei consumi.24

Tra il 2005 ed il 2010 si è registrato un incremento del numero e della superficie delle Medie Strutture di Vendita e delle Grandi Strutture di Vendita (sia alimentari che non alimentari) e nel periodo tra il 2010 ed il 2020 si è supposto un incremento della superficie delle strutture di vendita pari al trend di crescita degli edifici residenziali. In condizioni BAU i consumi energetici delle nuove strutture sono stati determinati proporzionalmente alla crescita delle superfici commerciali mentre per le strutture esistenti si prevede che i consumi energetici si mantengano stabili.

- Nello scenario di efficienza energetica si prevede invece l’attuazione al 2020 del seguente set di interventi:
 - sostituzione del parco frigo esistente (anche attraverso l’impiego di macchine a “recupero di calore”);
 - sostituzione dei sistemi per il raffrescamento degli ambienti;
 - sostituzione dei sistemi per il riscaldamento invernale;
 - installazione di sistemi per la produzione di freddo;
 - utilizzo della trigenerazione nelle Grandi Strutture di Vendita. Lo scenario di applicazione degli interventi tiene conto della sostituzione della apparecchiature tecnologiche giunte a fine vita e dell’impiego di nuovi sistemi caratterizzati da una maggiore efficienza energetica.

Per quanto riguarda l’illuminazione al 2011 è stata considerata la presenza di corpi illuminanti fluorescenti lineari ed un consumo energetico pari a 20 W/m². Al 2020 si ipotizza la sostituzione (73% dei casi) dei corpi illuminanti con lampade fluorescenti lineari a maggior efficienza e con lampade a LED (27% dei casi):

Gli scenari di consumo “BAU” ed “Efficienza” sono riportati in tabella:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Riscaldamento</td>
<td>9,6</td>
<td>10,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Produzione del freddo</td>
<td>30</td>
<td>30,5</td>
<td>3,3</td>
</tr>
<tr>
<td>Raffrescamento</td>
<td>4,0</td>
<td>4,2</td>
<td>1,7</td>
</tr>
<tr>
<td>Altri consumi generici</td>
<td>19,2</td>
<td>18,7</td>
<td>17,8</td>
</tr>
<tr>
<td>Illuminazione</td>
<td>7,8</td>
<td>10,4</td>
<td>7,3</td>
</tr>
</tbody>
</table>

Tabella 34 - Consumi elettrici e termici dei centri commerciali della Liguria.

Pertanto per il settore dei centri commerciali alimentari e non alimentari, il risparmio conseguibile considerando l’efficientamento energetico è pari a 45 ktep.

Il settore alberghiero25, di particolare rilievo in Liguria, data la vocazione turistica del territorio, presenta significativi consumi sia termici (per il riscaldamento, la produzione di acqua calda, la cottura dei cibi, …) che elettrici (dovuti essenzialmente al raffrescamento estivo ed all’illuminazione).

24 Elaborazioni di IRE SpA sui dati dell’indagine svolta dalla Provincia di Genova relativa ai consumi del settore terziario (centri commerciali e alberghi) nel 2005 e sul documento “Proposte per il Piano Nazionale di efficienza energetica” – 2007 di Confindustria con la collaborazione di ENEA e CESI

25 Confronto tra i dati dell’indagine svolta dalla Provincia di Genova relativa ai consumi del settore terziario (centri commerciali e alberghi) nel 2005 e i dati contenuti nel documento “La consistenza delle rette commerciale in Liguria” – Osservatorio regionale del commercio – Unioncamere Liguria, novembre 2011

26 Comprende le sole strutture alberghiere e quindi sono esclusi agriturismi, B&B, pensioni, ecc.

80
Anche per questo settore, i consumi sono stati reperiti dall’indagine svolta dalla Provincia di Genova ed integrati con i dati reperibili dal Bilancio Energetico Regionale 2011.

Dall’analisi dei dati ISTAT27 tra il 2007 ed il 2012 non è emersa una significativa variazione delle strutture alberghiere in Liguria. Pertanto in mancanza di informazioni più dettagliate, le superfici del settore alberghiero sono state considerate costanti nel periodo tra il 2011 ed il 2020.

Per la redazione del presente Piano sono state analizzate le seguenti categorie di consumi energetici:

- riscaldamento;
- raffrescamento;
- altri consumi generici - elettrodomestici;

e sono stati ipotizzati interventi di miglioramento energetico al 2020 relativi alla sostituzione dei sistemi per il raffrescamento degli ambienti e di riscaldamento invernale, oltre all’utilizzo della cogenerazione ed all’introduzione di sistemi domotici. Questi ultimi consentono di ridurre i consumi sia termici che elettrici attraverso una migliore ottimizzazione dei carichi.

Per quanto riguarda l’illuminazione degli alberghi è stato considerato un consumo energetico pari a 11 W/m2 ed una distribuzione di corpi illuminanti come segue:

<table>
<thead>
<tr>
<th>Tipologia</th>
<th>2011</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incandescenza</td>
<td>65%</td>
<td>0%</td>
</tr>
<tr>
<td>Alogena</td>
<td>8%</td>
<td>10%</td>
</tr>
<tr>
<td>Fluorescente compatta</td>
<td>22%</td>
<td>65%</td>
</tr>
<tr>
<td>Fluorescente lineare</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>Led</td>
<td>0,01%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Tabella 35 - Distribuzione tipologia lampade negli alberghi della Liguria.

Applicando gli interventi ipotizzati a questo settore del terziario, si ottengono i seguenti valori:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Riscaldamento</td>
<td>38,9</td>
<td>38,9</td>
<td>4,9</td>
</tr>
<tr>
<td>Raffrescamento</td>
<td>17,5</td>
<td>17,5</td>
<td>7,9</td>
</tr>
<tr>
<td>Altro ed Elettrod.</td>
<td>10,6</td>
<td>10,6</td>
<td>10,6</td>
</tr>
<tr>
<td>Domotica</td>
<td></td>
<td>*</td>
<td>12,3</td>
</tr>
<tr>
<td>Illuminazione</td>
<td>5,4</td>
<td>5,4</td>
<td>4,3</td>
</tr>
</tbody>
</table>

Tabella 36 - Consumi elettrici e termici degli alberghi della Liguria. *Dato non disponibile

Per il settore alberghiero il risparmio conseguito considerando l’efficientamento energetico è pari a 11 ktep.

Il settore ospedaliero è particolarmente enerzigivo sia per la vetustà che caratterizza buona parte delle strutture edili e degli impianti (e quindi la bassa efficienza del sistema edificio-impianto), che per la tipologia del servizio, che richiede significativi apporti di calore, freddo ed energia elettrica. In particolare gli impianti devono garantire:

- energia termica (calore), per la produzione di vapore surriscaldato ed acqua calda sanitaria e per il riscaldamento invernale esteso alle 24 ore/giorno, con temperature medie interne superiori di 2÷4 gradi rispetto agli altri edifici appartenenti al settore civile;

27 Tavola di Dati ISTAT: “Capacità degli esercizi ricettivi e movimento dei clienti negli esercizi ricettivi”
- refrigerazione per la conservazione di materiali medicali deperibili (medicinali, sangue ecc.) e di prodotti alimentari, per il raffrescamento estivo in generale ed in particolare per il condizionamento di sale operatorie e reparti a terapia intensiva caratterizzati da elevati apporti interni
- energia elettrica per la ventilazione, per l’illuminazione interna ed esterna, per forza motrice (montacarichi ed ascensori) e per il funzionamento di un elevato numero di macchinari medicali.

La Regione Liguria tramite la stipula del contratto per la fornitura di energia elettrica e termica e per la gestione e manutenzione degli impianti ha avviato, dal 2007, un processo di efficientamento delle strutture sanitarie liguri. Dal 2007 ad oggi sono stati eseguiti gli interventi previsti e considerando che il contratto avrà termine a fine 2017, entro il 2020 non se ne prevedono ulteriori. Parallelamente si prevede un incremento dei consumi nel settore ospedaliero per rispondere agli obblighi previsti dalla normativa di settore per quanto riguarda la ventilazione ma anche una riduzione del numero e della superficie delle strutture esistenti per gli effetti della chiusura delle piccole strutture ospedaliere. Pertanto, si considerano sostanzialmente stabili i consumi del settore ospedaliero tra il 2011 ed il 2020.

Il “terziario non specializzato”, ossia non compreso nei comparti analizzati in precedenza, è molto eterogeneo (compriede uffici, piccole rivendite al dettaglio, servizi pubblici, agriturismo ecc.) e quindi per le stime sui consumi energetici si è fatto ricorso ad analisi di tipo statistico.

I consumi energetici sono stati determinati per differenza tra i consumi totali noti28 (reperiti dall’indagine svolta dalla Provincia di Genova e dal BER 2011) ed i consumi noti relativi a centri commerciali, alberghi e ospedali29.

I consumi energetici al 2011 sono stati distinti secondo i seguenti usi principali:

- produzione di freddo;
- apparecchiature per uffici;
- climatizzazione ambienti;
- riscaldamento degli ambienti;
- produzione di acqua calda sanitaria;
- illuminazione;
- illuminazione pubblica;
- altri processi e servizi generici.

La suddivisione dei consumi totali tra i vari sotto settori, è stata determinata sulla base delle analisi condotte30 da Confindustria con la collaborazione di ENEA e CESI nel 2007. In particolare i consumi dell’illuminazione pubblica sono stati determinati a partire dai dati rilevati in alcuni Comuni liguri.

Per quanto riguarda le nuove costruzioni nel settore terziario non specializzato, si è ipotizzato che queste seguano il trend di crescita degli edifici residenziali analogamente a quanto già stabilito per i centri commerciali.

Per la definizione dello scenario di Piano sono stati previsti interventi di efficienza energetica relativi alla sostituzione del parco frigo (anche attraverso l’impiego di macchine a “recupero di calore”) e dei sistemi per il raffrescamento ed il riscaldamento invernale degli ambienti.

Sono stati inoltre ipotizzati i seguenti interventi sul sistema edificio impianto (analogamente a quanto fatto per il settore residenziale):

- sostituzione caldaia con generatore di calore ad alta efficienza e installazione valvole termostatiche;
- isolamento termico delle pareti degli edifici sottoposti ad interventi di manutenzione straordinaria;

28 Bilancio Energetico Regionale 2011
29 Elaborazioni di IRE SpA sui dati dell’indagine svolta dalla Provincia di Genova relativa ai consumi del settore terziario (centri commerciali e alberghi) nel 2005 e monitoraggio nell’ambito della Convenzione del Multiservizio Tecnologico.
30 “Proposte per il Piano Nazionale di efficienza energetica” - 2007
• isolamento termico dei solai e delle coperture degli edifici sottoposti ad interventi di manutenzione straordinaria;
• sostituzione dei serramenti.

Applicando gli interventi a questo settore del terziario, si ottengono i seguenti valori:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Produzione del freddo</td>
<td>10,7</td>
<td>11,2</td>
</tr>
<tr>
<td>Apparecchiature per uffici</td>
<td>24,5</td>
<td>25,6</td>
</tr>
<tr>
<td>Climatizzazione ambienti</td>
<td>17,7</td>
<td>18,5</td>
</tr>
<tr>
<td>Produzione di acqua calda sanitaria</td>
<td>5,6</td>
<td>5,9</td>
</tr>
<tr>
<td>Illuminazione</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Consumi generici</td>
<td>19,3</td>
<td>20,2</td>
</tr>
<tr>
<td>Riscaldamento</td>
<td>171</td>
<td>188</td>
</tr>
</tbody>
</table>

Tabella 37 - Consumi elettrici e termici del terziario non specializzato di Liguria

Per il settore del terziario non specializzato il risparmio conseguibile considerando l’efficientamento energetico è pari a 70 ktep.

Il risparmio energetico conseguibile per il settore terziario a fronte di un corretto ricambio tecnologico e sulla spinta dell’innovazione tecnologica derivante dalle politiche europee, nazionali e regionali delle apparecchiature, degli impianti e dei componenti edilizi risulta pertanto pari a 126 ktep.

Azioni per l’efficienza energetica nel settore terziario
La Regione Liguria, al fine di favorire l’attuazione dello scenario di efficienza energetica, oltre a proseguire e rafforzare le iniziative di carattere normativo già delineate per il settore residenziale relativamente agli interventi su componenti edilizie ed impiantistiche, favorirà la definizione e la diffusione di modelli di intervento per l’efficienza energetica anche attraverso la partecipazione a progetti e programmi europei in collaborazione con altre Regioni.

In tal senso si terrà conto anche di quanto elaborato nella “Road Map” del progetto MED Strategico Marie “A Policy Guide to prepare and implement long term Regional Building Energy Renovation Strategies”31.

La Regione attuerà inoltre misure specifiche a valere sulla Programmazione dei Fondi Strutturali POR FESR 2014-2020 con riferimento alla misura indicata nelle tabelle seguenti.

| POR-FESR 2014-2020 |
|-------------------|----------------|----------------|
| Asse | Obiettivo Tematico | Priorità | Obiettivo Specifico |
| 4 ENERGIA | 04 Sostenere la transizione verso un’economia a basse emissioni di carbonio in tutti i settori | 4b Promuovere l’efficienza energetica e l’uso dell’energia rinnovabile nelle imprese | 4.2 Riduzione dei consumi energetici e delle emissioni nelle imprese e integrazione di fonti rinnovabili (Rif. RA 4.2 AP) |

Tabella 38 - Elementi del POR FESR 2014-2020 correlati all’incremento dell’efficienza energetica nel settore terziario

O.T. 04 – Sostenere la transizione verso un’economia a basse emissioni di carbonio in tutti i settori

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>4b - Promuovere l’efficienza energetica e l’uso dell’energia rinnovabile nelle imprese.</td>
<td>OS4.2 - Riduzione dei consumi energetici e delle emissioni nelle imprese e integrazione di fonti rinnovabili (Rif. RA 4.2 AP)</td>
<td>Incentivi finalizzati alla riduzione dei consumi energetici e delle emissioni di gas climalteranti delle imprese e delle aree produttive compresa l’installazione di impianti di produzione di energia da fonte rinnovabile per l’autoconsumo, dando priorità alle tecnologie ad alta efficienza (rif. Azione 4.2.1 AP).</td>
<td>PMI in forma singola o associata.</td>
</tr>
</tbody>
</table>

Tabella 39 - Dettaglio delle priorità di investimento, degli obiettivi specifici, delle azioni e dei beneficiari relativi agli elementi del POR FESR 2014-2020 correlati all’incremento dell’efficienza energetica nel settore terziario

6.2.2. Il settore pubblico

La quota del parco immobiliare di proprietà degli enti pubblici è considerevole, gode di notevole visibilità da parte della popolazione e pertanto viene indicato quale settore che dovrebbe avere un ruolo esemplare in materia di prestazione energetica nell’edilizia. La Direttiva 2002/91/UE, recepita tramite il D Lgs n. 192/2005 e tramite il D Lgs n. 311/2006, evidenzia questo ruolo specificando che “gli edifici occupati dalle pubbliche autorità o aperti al pubblico, dovrebbero assumere un approccio esemplare nei confronti dell’ambiente e dell’energia assoggettandosi alla certificazione energetica ad intervalli regolari” e che dovrebbero esporre l’Attestato di Certificazione Energetica32 in visibile al pubblico.

Anche la Direttiva 2010/31/UE specifica il ruolo esemplare che dovrebbe avere il settore pubblico in materia di prestazione energetica nell’edilizia, specificando che “i piani nazionali dovrebbero fissare obiettivi più ambiziosi per gli edifici occupati da enti pubblici” e che le pubbliche amministrazioni dovrebbero attuare le raccomandazioni riportate sull’Attestato di Prestazione Energetica. Tale Direttiva indica che gli edifici di nuova costruzione di proprietà o ad uso di enti pubblici, a partire dal 31 dicembre 2018 debbano essere ad energia quasi zero, impone inoltre che le prestazioni energetiche di edifici pubblici soggetti a ristrutturazione importante siano migliorate e ricondotte quantomeno ai requisiti minimi previsti dal D Lgs n. 192/2005 (in particolare dal suo decreto attuativo DM 26/06/2015 “Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici”).

La Direttiva 2012/27/UE fissa un tasso annuo di edifici pubblici da sottoporre a riqualificazione energetica (pari al 3% della superficie coperta totale all’anno).

Il D Lgs n. 102/2014 (successivamente integrato dal D Lgs n.141/2016), che recepisce la suddetta Direttiva 2012/27/UE, prevede che le Pubbliche Amministrazioni Centrali, per raggiungere l’obiettivo di risparmio, possano far ricorso allo strumento del finanziamento tramite terzi, a contratti di rendimento energetico nonché all’intervento di ESCo. A tal riguardo, il Conto Termico, che incentiva in particolare interventi di riqualificazione energetica nel settore pubblico, prevede, nella versione attuale (Decreto Interministeriale

32 Modificato dalla Direttiva 2010/31/UE in Attestato di Prestazione Energetica
16 febbraio 2016, Conto Termico 2.0) come in quella precedente (DM 28 dicembre 2012), proprio il ricorso ai contratti di rendimento energetico stipulati con ESCo.

Un ulteriore ambito di intervento riguarda l’illuminazione pubblica, per la quale possono essere avviate azioni di riqualificazione anche finalizzate a ridurre gli elevati costi di esercizio. Le attuali tecnologie di gestione e controllo, largamente diffuse in tutta Europa, stanno orientando in modo sostanziale la gestione e la manutenzione degli impianti di illuminazione pubblica in un’ottica “smart”, grazie alla quale ciascun punto luce non solo viene costantemente monitorato dal punto di vista del funzionamento, ma dispone di sistemi di autodiagnosi ed autoregolazione in grado ottimizzarne il flusso luminoso rispetto ai consumi energetici ed ai livelli di illuminamento dell’area servita. Ovviamente una gestione smart richiede investimenti iniziali e capacità specialistiche ed in molti paesi europei questi impianti vengono affidati ad ESCo specializzate che si fanno carico sia della riqualificazione che dalla successiva gestione. Questa pratica è particolarmente condivisa dalla Commissione Europea e dalla Banca Europea per gli Investimenti che ha avviato diverse azioni volte a sostenerla, a partire dal bando ELENA, che finanzia a fondo perduto l’assistenza tecnica per la preparazione dei bandi di gara per interventi di efficienza energetica da appaltare alle ESCo. Il Ministero dell’Ambiente e della Tutela del Territorio e del Mare ha inoltre emanato il Decreto 23 dicembre 2013, successivamente aggiornato ed integrato dal Decreto 21 luglio 2014 che contiene i Criteri Ambientali Minimi (CAM) nell’ambito del Piano d’Azione Nazionale sugli acquisti verdi (PAN GPP), che raccoglie le prescrizioni ed i criteri per l’acquisto di lampade, moduli led e apparecchi di illuminazione per l’illuminazione pubblica e per l’affidamento del servizio di progettazione di impianti di illuminazione pubblica da parte delle Pubbliche Amministrazioni (PA).

In Liguria negli ultimi anni diversi comuni hanno intrapreso la via dell’efficientamento dei punti luce presenti nel proprio territorio, attratti dai notevoli risultati che tali interventi garantiscono, tra cui: la sostituzione delle lampade, la riduzione dei carichi elettrici, l’incremento del flusso luminoso, il miglioramento delle prestazioni complessive della rete distributiva elettrica e la consistente riduzione delle spese manutentive.

In particolare gli interventi più significativi che sempre più Pubbliche Amministrazioni stanno decidendo di intraprendere consistono nella sostituzione delle originali lampade, ormai obsolete, tipicamente a vapori di mercurio, con apparecchi di nuova generazione e a maggiore efficienza (caratterizzati da un miglior rapporto lumen/watt, quali il led, una tecnologia che negli ultimi anni ha riscontrato un notevole sviluppo nelle applicazioni relative all’illuminazione pubblica) e in azioni di parzializzazione del flusso luminoso emesso dalle sorgenti durante le fasce orarie notturne, possibile a fronte di una diminuzione del flusso veicolare.

La principale difficoltà incontrata dai comuni liguri che iniziano tale percorso è rappresentata dalla frammentazione della proprietà del parco lampade comunale: infatti i comuni liguri sono in media proprietari del solo 40% degli impianti contro il 60% di proprietà di un altro gestore, tipicamente ENEL Sole; sono rari i casi in cui la totalità dei punti luce risulta di proprietà comunale ed in molti casi i Comuni non dispongono neppure di un censimento completo.

Inoltre, accade spesso che il soggetto Enel Sole abbia ricevuto incarico dal comune anche per la manutenzione degli impianti di proprietà comunale. Tali problematiche rendono spesso difficile la programmazione degli interventi di riqualificazione degli impianti.

Circa i punti luce di proprietà comunale (se non promiscui), tenendo conto che il tempo di ritorno dell’investimento è alquanto breve (2-3 anni), la PA può decidere di assumersi l’intero costo degli interventi di riqualificazione, assegnando i lavori ad un ditta specializzata tramite contratto di appalto convenzionale, oppure di consegnare, tramite gara pubblica, la riqualificazione con la successiva gestione dei propri impianti di illuminazione ad un Soggetto Terzo (per es. una ESCo) che oltre ad occuparsi della manutenzione ordinaria degli stessi, assuma anche gli oneri per i nuovi lavori ed il relativo rischio d’impresa connesso, a fronte di un canone pagato dall’Amministrazione per una durata predefinita.
Per quanto concerne invece gli impianti di proprietà di altro gestore, l’effettiva realizzazione di interventi di efficientamento energetico e l’orizzonte temporale per realizzarli risulta vincolato al contratto di gestione che intercorre tra le Amministrazioni ed Enel Sole.

Eventualmente l’amministrazione può acquisire a patrimonio pubblico il parco illuminante di Enel Sole attraverso il riscatto. Questa ipotesi, pur essendo riconosciuta legittima, è stata intrapresa da un numero limitato di Comuni, a causa della complessità del procedimento e delle difficoltà nella valutazione economica degli impianti da riscattare.

Per quanto riguarda la quantificazione del risparmio energetico connesso agli interventi più significativi intrapresi dai Comuni nel settore della Pubblica Illuminazione (PI), mediamente azioni quali la sostituzione del parco lampade a led e la parzializzazione del flusso luminoso possono portare risparmi fino al 60% dei consumi comunali per la PI (che a loro volta rappresentano tra il 2 e il 4% dei consumi finali del suo territorio comunale riportati nella “Baseline” del Patto dei Sindaci). Analogamente a quanto eseguito per il terziario non specializzato (vedasi Capitolo 6.2.1.2) sono stati determinati i consumi per l’illuminazione pubblica nello scenario “Business As Usual” e nello scenario di “Efficienza”; considerando una riduzione dei consumi del 40%, il risparmio conseguibile è pari a 5 ktep, che concorre al raggiungimento dell’obiettivo indicato per il settore terziario a 126 ktep.

I Comuni e gli altri Enti Territoriali liguri si sono in generale dimostrati molto attivi negli ultimi anni nel campo delle rinnovabili e dell’efficienza energetica, mettendo in atto strumenti dedicati alla pianificazione di settore.

Oltre ai Piani Energetici redatti dalle Province, sono infatti numerosi i Piani d’Azione per l’Energia Sostenibile (SEAP) preparati dai Comuni nell’ambito del Patto dei Sindaci. Il Patto dei Sindaci è un’iniziativa su base volontaria con cui i Comuni si impegnano direttamente con la Comunità Europea a ridurre le emissioni di CO2 sul proprio territorio di almeno il 20% entro il 2020, rispetto ad un anno base di riferimento (Baseline). A tal fine i Comuni firmatari realizzano entro un anno dalla firma un Piano (SEAP) contenente l’Inventario Base delle Emissioni riferito ad alcuni settori chiave (civile, terziario, trasporti, produzione di energia e opzionalmente industrie ed agricoltura) e la programmazione di linee di intervento su efficienza energetica e fonti rinnovabili, finalizzate al conseguimento dell’obiettivo generale di riduzione delle emissioni. I SEAP costituiscono pertanto una fonte di azioni e strumenti che concorrono all’attuazione delle politiche energetiche regionali, nazionali ed europee.

Anche le Autorità Portuali hanno programmato ed avviato iniziative su questi temi: l’Autorità Portuale della Spezia ad esempio attraverso il progetto “Green Port” ha realizzato una serie di studi per ridurre gli impatti sulle emissioni delle attività portuali attraverso:

- elettrificazione delle banchine (cold-ironing);
- mobilità elettrica in porto;
- produzioni di energia da fonti rinnovabili;
- risparmio energetico attraverso sostituzione lampade a incandescenza con lampade a led.

Analogamente l’Autorità Portuale di Savona ha avviato una serie di iniziative volte alla razionalizzazione dei consumi dell’illuminazione portuale ed allo sfruttamento delle fonti rinnovabili di energia (in particolare eolico di piccola taglia e fotovoltaico) e sta studiando la possibilità di realizzazione uno sistema di gestione delle utenze portuali situate sulla piattaforma di Vado Ligure, secondo i principi delle moderne “Smart Grid”.

L’Autorità Portuale di Genova si è dotata a partire da luglio 2010 del Piano Energetico Ambientale Portuale (PEAP), uno strumento operativo per orientare e promuovere l’uso delle fonti rinnovabili e l’aumento dell’efficienza energetica in ambito portuale al fine di diminuire le emissioni di CO2 dell’area. Esso fornisce:

33 Ad oggi in Liguria sono 105 i Comuni firmatari, con oltre il 75% della popolazione coinvolta.
• all’Autorità di gestione, gli strumenti necessari alla realizzazione di azioni concrete di intervento per una regolamentazione di indirizzo degli interventi futuri attuabili nell’area, anche ad opera degli operatori privati; a tale proposito sono state approvate dal Comitato Portuale le "Linee Guida per l’esecuzione delle opere di riqualificazione energetica e di miglioramento della produzione energetica in ambito “Porto di Genova”;
• agli operatori privati, uno strumento concreto e le informazioni al contorno necessarie per cogliere significative opportunità di investimento capaci di generare ritorni economici sia sotto forma di risparmi che di nuovi ricavi, ovvero valutazione del potenziale in termini di produzione di energia da fonti rinnovabili e di risparmio energetico ma anche analisi puntuale sugli interventi concretamente realizzabili.

Azioni per l’efficienza energetica nel settore pubblico
È obiettivo della Regione Liguria sostenere fortemente la riqualificazione energetica del patrimonio edilizio pubblico, con particolare riferimento agli edifici scolastici, agli impianti sportivi ed all’edilizia abitativa pubblica attraverso misure dedicate a valere sui fondi POR FESR 2014-2020 (Tabella 40 e Tabella 41) e PSR 2014-2020 (Tabella 42 e Tabella 43), anche al fine di favorire lo sviluppo sostenibile delle città secondo il paradigma delle “Smart Cities and Communities” (si vedano Tabelle seguenti). Gli interventi di efficienza energetica dei sistemi di illuminazione pubblica verranno promossi dalla Regione Liguria anche favorendo l’accesso a strumenti finanziari quali quelli previsti dal programma Elena, ovvero attraverso forme di partenariato pubblico-privato mediante ricorso alle ESCo.
Per promuovere la diffusione del meccanismo delle ESCo per la riqualificazione del parco edilizio di proprietà pubblica, la Regione Liguria potrà inoltre individuare società accreditate aventi il compito di validare gli studi ed i progetti necessari per l’accesso al finanziamento tramite terzi. La Regione Liguria considera determinante il contributo dei Comuni in relazione agli obiettivi di Piano: in tal senso la Regione, in collaborazione con IRE SpA, ha avviato nel corso del 2013 un Protocollo d’Intesa con Province34 e Comuni per il coordinamento delle iniziative del Patto dei Sindaci in Liguria e per la facilitazione dell’attuazione delle azioni previste nei Piani d’Azione per l’Energia Sostenibile (SEAP); ha istituito inoltre un tavolo di confronto con i Comuni con oltre 40.000 abitanti per supportarli ed incentivare la partecipazione a progetti europei nell’ambito del programma Horizon 2020.
La Regione Liguria, nell’ambito della European Innovation Partnership on Smart Cities and Communities35, ha aderito all’Invitation for Commitment (N.d.T “richiesta di impegno”) che invitava tutti gli attori pubblici e privati europei ad aderire agli obiettivi europei di sviluppo in chiave Smart di città e distretti, inviando i propri progetti, in corso e futuri, nell’ambito integrato energia/trasporti/ICT al fine di condividerli a livello europeo e potenziarne le ricadute. Gli impegni della Regione Liguria, approvati dalla UE, riguardano il tema “Baselines, Project Indicators and Metrics”. Tramite IRE SpA, la Regione ha anche aderito ad un Commitment sul tema “Integrated infrastructure” relativo all’innovazione nell’illuminazione pubblica.

<table>
<thead>
<tr>
<th>POR-FESR 2014-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asse</td>
</tr>
</tbody>
</table>

34 La Città Metropolitana di Genova, istituita dalla legge "Delrio", n. 56 del 2014, sostituisce a partire dal 1° gennaio 2015 la Provincia di Genova.
35 La European Innovation Partnership on Smart Cities and Communities (EIP-SCC) è una iniziativa europea che raccoglie città, industria e cittadini al fine di migliorare la vivibilità delle aree urbane attraverso soluzioni integrate sostenibili, che tocchino temi come l’innovazione, l’approccio partecipato, la pianificazione, l’efficienza energetica, i trasporti e l’ICT.
POR-FESR 2014-2020

Obiettivo

Priorità

<table>
<thead>
<tr>
<th>Asse</th>
<th>Obiettivo Tematico</th>
<th>Priorità</th>
<th>Obiettivo Specifico</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ENERGIA</td>
<td>04 Sostenere la transizione verso un'economia a basse emissioni di carbonio in tutti i settori.</td>
<td>4c</td>
<td>4.1 Riduzione dei consumi energetici negli edifici e nelle strutture pubbliche o ad uso pubblico, residenziali e non residenziali e integrazione di fonti rinnovabili (Rif. RA 4.1 AP).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 CITTÀ</td>
<td>04 Sostenere la transizione verso un'economia a basse emissioni di carbonio in tutti i settori.</td>
<td>4c</td>
<td>6.2 Riduzione dei consumi energetici negli edifici e nelle strutture pubbliche o ad uso pubblico, residenziali e non residenziali e integrazione di fonti rinnovabili (Rif. RA 4.1 AP).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella 40 - Elementi del POR FESR 2014-2020 correlati all'incremento dell'efficienza energetica nel settore pubblico

POR-FESR 2014-2020

ASSE 4 - ENERGIA

O.T. 04 – Sostenere la transizione verso un'economia a basse emissioni di carbonio in tutti i settori

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
</table>

ASSE 6 - CITTÀ

O.T. 04 – Sostenere la transizione verso un'economia a basse emissioni di carbonio in tutti i settori

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>4c</td>
<td>OS6.2 - Riduzione dei consumi energetici negli edifici e nelle strutture pubbliche o ad uso pubblico, residenziali e non residenziali e integrazione di fonti rinnovabili (Rif. Azione 4.1.1 AP)</td>
<td>Promozione dell’eco-efficienza e riduzione di consumi di energia primaria negli edifici e strutture pubbliche (Rif. Azione 4.1.1 AP)</td>
<td>Città di Savona, Imperia, Sanremo</td>
</tr>
</tbody>
</table>
edifici pubblici, e nel settore dell'edilizia abitativa.
residenziali e integrazione di fonti rinnovabili (Rif. RA 4.1 AP)

- Adozione di soluzioni tecnologiche per la riduzione dei consumi energetici delle reti di illuminazione pubblica, promuovendo installazioni di sistemi automatici di regolazione (sensori di luminosità, sistemi di telecontrollo e di telegestione energetica della rete) (Rif. Azione 4.1.3 AP)

<table>
<thead>
<tr>
<th>SOTTOMISURA</th>
<th>Sottomisure</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFRASTRUTTURE</td>
<td>07.02 Infrastrutture essenziali alle popolazioni rurali</td>
</tr>
</tbody>
</table>

Tabella 41 - Detttaglio delle priorità di investimento, degli obiettivi specifici, delle azioni e dei beneficiari relativi agli elementi del POR FESR 2014-2020 correlati all'incremento dell'efficienza energetica nel settore pubblico

<table>
<thead>
<tr>
<th>Misura</th>
<th>Sottomisure</th>
</tr>
</thead>
<tbody>
<tr>
<td>M07 Servizi di base e rinnovamento dei villaggi nelle zone rurali (Art. 20)</td>
<td>07.02 Infrastrutture essenziali alle popolazioni rurali</td>
</tr>
</tbody>
</table>

Tabella 42 - Elementi del PSR 2014-2020 correlati all'incremento dell’efficienza energetica nel settore pubblico

PSR 2014-2020
MISURA M07 – Servizi di base e rinnovamento dei villaggi nelle zone rurali (Art. 20)

La misura persegue l'obiettivo di realizzare uno sviluppo economico territoriale delle comunità rurali compresi la creazione e il mantenimento di posti di lavoro. Essa sostiene esclusivamente interventi nelle aree rurali intermedie (aree C) e nelle aree rurali con problemi di sviluppo (aree D).

SOTTOMISURA M07.02 INFRASTRUTTURE ESSENZIALI ALLE POPOLAZIONI RURALI

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>L’operazione offre sostegno ad investimenti finalizzati alla creazione, al miglioramento o all’espansione di ogni tipo di infrastrutture su piccola scala, compresi gli investimenti nelle energie rinnovabili e nel risparmio energetico. Sono ammessi al sostegno soltanto gli investimenti di realizzazione delle infrastrutture su piccola scala, relativi a impianti per la produzione e la distribuzione di energia termica proveniente da biomasse forestali e/o da scarti e sottoprodotti agricoli e agro-industriali, compreso il trattamento delle biomasse per renderle utilizzabili a fini energetici (cippatura, disidratazione, ecc.). Sono inoltre ammessi gli investimenti per la costruzione, miglioramento o ampliamento di strade d’accesso ai borghi rurali e loro viabilità interna comprese le opere accessorie quali fognatura e pubblica illuminazione. Relativamente agli investimenti per la realizzazione di impianti per la produzione di energia termica: • devono essere realizzati e gli utenti devono essere situati esclusivamente nelle aree rurali intermedie (aree C) e nelle aree rurali con problemi di sviluppo (aree D), come definite dall’Accordo di Partenariato alla Sezione 1A - capitolo 1.1.4 “sfide territoriali”; • devono essere conformi alle norme della Legge Regionale. n. 38 del 30 dicembre 1998 “Disciplina della valutazione di impatto ambientale” e ss.mm.e.ii; Inoltre: • sono ammissibili a finanziamento impianti di potenza non superiore ad 5 MWt; • è escluso l’impiego di cereali ed altre colture amidacee, zuccherine,</td>
<td></td>
</tr>
<tr>
<td>• Comuni singoli o associati; • altri enti pubblici (province, enti parco, città metropolitane, ecc.); • per quanto riguarda gli acquedotti per uso potabile, sono ammissibili anche consorzi rurali o di miglioramento fondiario o altre forme associative di livello locale fra gli utenti dell’impianto.</td>
<td></td>
</tr>
</tbody>
</table>
oleaginose, inclusi i biocarburanti e altre colture agricole e forestali dedicate;

• devono rispettare criteri minimi di efficienza energetica;
• l’energia termica prodotta dagli impianti finanziati con la presente operazione è utilizzata esclusivamente a servizio di edifici pubblici.

Il sostegno per le reti di distribuzione di energia termica riguarda solo gli investimenti relativi alla parte pubblica della rete. Gli allacciamenti delle singole utenze sono ammissibili solo se si tratta di edifici pubblici o impianti pubblici.

Tabella 34 - Dettaglio del tipo di investimento e dei beneficiari relativi agli elementi del PSR 2014-2020 correlati all’incremento dell’efficienza energetica nel settore pubblico

6.2.3. Le imprese ed i cicli produttivi

L’attuale fase di crisi ha comportato una forte contrazione del comparto produttivo e quindi una conseguente riduzione dei consumi. D’altro canto questa situazione di sofferenza ha portato ad una diminuzione degli investimenti per la riqualificazione energetica e quindi gli attuali processi produttivi sono caratterizzati da una elevata intensità energetica (energia necessaria per unità di prodotto).

In generale, l’uso efficiente dell’energia ha infatti una priorità molto bassa e ciò che influenza prioritariamente gli investimenti è l’obsolescenza impiantistica o la necessità di apportare modifiche al processo produttivo.

Considerando, però, l’effetto di risparmio energetico\(^\text{36}\) sull’intera vita utile della tecnologia, larga parte degli investimenti sarebbe economicamente conveniente anche in assenza di forme di incentivazione.

La Direttiva Europea 2012/27/UE prevede che gli Stati Membri elaborino programmi intesi ad incoraggiare le PMI a sottoporsi ad audit energetici e favorire, anche con regimi di incentivazione, l’attuazione delle raccomandazioni risultanti, mentre per le imprese che non sono PMI prevede che siano soggette ad un audit energetico periodico. Il D Lgs n 102/2014 (successivamente integrato dal D Lgs n.141/2016), che recepisce tale Direttiva prevede che le grandi imprese eseguano ciclicamente una diagnosi energetica. La medesima Direttiva istituisce un regime nazionale obbligatorio di efficienza energetica a cui l’Italia adempie attraverso il sistema dei Titoli di Efficienza Energetica (TEE). Il meccanismo dei Certificati Bianchi costituisce la più importante misura di efficienza energetica dal punto di vista della quantità dei risparmi conseguiti implementata in industria e la maggior percentuale di TEE emessi sono per questo settore.

Tabella 44 - Percentuale di TEE per il settore industriale in Liguria.
Fonte: Relazioni semestrali sui TEE redatte da ENEA e GSE

I Titoli di Efficienza Energetica sono un’innovazione positiva nel sistema italiano e attualmente rappresentano, dopo l’evoluzione degli standard normativi obbligatori, il primo strumento per potenzialità di generazione di risparmi. Il meccanismo ha avuto uno sviluppo costante ed ha suscitato l’interesse di un numero sempre crescente di aziende che intendono avvalersene. Le imprese industriali possono entrare nel meccanismo attraverso una diagnosi energetica tale da individuare interventi di efficientamento o affidare ad una ESCo l’incarico di realizzare la diagnosi energetica e presentare la proposta per l’ottenimento dei TEE.

<table>
<thead>
<tr>
<th>Categoria di intervento</th>
<th>Descrizione intervento</th>
<th>N° TEE anni 2010 e 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>IND - T</td>
<td>interventi di riduzione dei fabbisogni termici nel settore industriale (es. efficientamento delle centrali termiche, recupero di cascami termici)</td>
<td>149.017</td>
</tr>
<tr>
<td>IND - GEN</td>
<td>installazione di impianti di cogenerazione per la fornitura di calore nell’ambito di processi industriali</td>
<td>127.416</td>
</tr>
<tr>
<td>IND - E</td>
<td>interventi sugli usi elettrici nel settore industriale (es. efficientamento di sistemi per la refrigerazione, applicazione di inverter a compressori, ventilatori, ecc.)</td>
<td>199.608</td>
</tr>
</tbody>
</table>
| **Totale industria** | | **476.041** | 74,3%*

*% TEE emessi per la categoria industriale rispetto al totale dei TEE emessi

Tabella 45 - TEE rilasciati in Liguria per procedimenti inerenti le Richieste di Verifica e Certificazione per il settore industriale conclusi positivamente dal GSE (periodo gennaio 2010 – dicembre 2011)37

Per il primo semestre del 2012, i TEE emessi in Liguria nel settore industriale, per le medesime categorie (IND – T, IND – GEN, IND – E), sono pari a 168.064 (pari al 68,8% dei TEE totali); per il 2013, i TEE emessi nel settore industriale sono pari a 401.781 TEE, corrispondenti a 350,6 ktep di risparmio di energia conseguito.

37 Fonte: relazioni semestrali sui TEE redatte da ENEA e GSE
Con riferimento ai TEE, si evidenzia che nel periodo gennaio-dicembre 2013, il GSE ha rilasciato circa 270.000 TEE II CAR (Cogenerazione ad Alto Rendimento), pari al 30% del totale riconosciuto nell’ambito della CAR.

Nelle Direttive dell’Unione Europea in tema efficienza energetica il ricorso ai servizi delle ESCo è indicato come lo strumento più efficace per migliorare l’efficienza e ridurre i consumi. L’obiettivo primario delle ESCo infatti è quello di promuovere lo sviluppo del mercato dei servizi energetici attraverso una procedura che assicuri un risparmio energetico garantito all’utente finale. I risparmi energetici certificati nell’ambito dei titoli di efficienza energetica alla fine di maggio 2011 (primi sei anni di operatività del meccanismo) sono stati pari a 9,6 Mtep\(^2\), di questi, ben l’80% è stato generato dall’intervento di una ESCo\(^3\).

Il mercato delle ESCo conta oltre 1.900 aziende, anche se di queste solo il 16% ha presentato progetti nell’ambito del meccanismo dei titoli di efficienza energetica. Da uno studio realizzato da ENEA in collaborazione con FIRE\(^4\) è emerso che le difficoltà finanziarie, istituzionali e organizzative ostacolano lo sviluppo del mercato delle ESCo in Italia.

La Regione negli ultimi anni ha messo a punto specifiche azioni mirate per le imprese, tra cui specifici bandi di finanziamento, volte a contrastare questo fenomeno e favorire l’efficientamento dei processi produttivi (si veda Capitolo 4.3).

L’incertezza legata alla durata della crisi economica rende difficoltoso prevedere i fabbisogni energetici di questo settore al 2020. Sulla base delle indicazioni delle associazioni di categoria (Confindustria) appare che i tempi necessari per il ritorno ad un livello produttivo pari a quello precedente al 2008 saranno piuttosto lunghi ed andranno oltre il 2020. Tuttavia nel presente Piano si è ipotizzato prudenzialmente che i consumi del settore produttivo si mantengano costanti; in altri termini si suppone che la riduzione dei consumi legata alle azioni di efficientamento verranno compensate da un incremento della produzione, e quindi dei consumi, per il graduale superamento della crisi.

\(^{40}\) Federazione Italiana per l’uso razionale dell’Energia
Azioni per l’efficienza energetica di imprese e cicli produttivi
La Regione Liguria intende proseguire azioni volte all’innovazione dei cicli produttivi in un’ottica di maggiore sostenibilità sotto il profilo dei consumi di energia, sia attraverso la Programmazione POR FESR 2014-2020 strettamente inerente al tema energetico (Tabella 46 e Tabella 47), che attraverso le relative misure finalizzate al supporto alla competitività delle imprese (si veda Cap. 6.6.1). Attraverso il PSR 2014-2020 (Tabella 48 e Tabella 49) verrà fornito sostegno agli interventi per il miglioramento dell’efficienza energetica delle imprese agricole e nell’ambito delle azioni previste a valere sul Fondo Sociale Europeo, saranno inoltre previste specifiche azioni formative su questi temi (si veda Cap. 6.4).

POR-FESR 2014-2020

<table>
<thead>
<tr>
<th>Asse</th>
<th>Obiettivo Tematico</th>
<th>Priorità</th>
<th>Obiettivo Specifico</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ENERGIA</td>
<td>04 Sostenere la transizione verso un’economia a basse emissioni di carbonio in tutti i settori.</td>
<td>4b Promuovere l’efficienza energetica e l’uso dell’energia rinnovabile nelle imprese.</td>
<td>4.2 Riduzione dei consumi energetici e delle emissioni nelle imprese e integrazione di fonti rinnovabili (Rif. RA 4.2 AP).</td>
</tr>
</tbody>
</table>

Tabella 46 - Elementi del POR FESR 2014-2020 correlati all’incremento dell’efficienza energetica delle imprese e dei cicli produttivi

POR-FESR 2014-2020

O.T. 04 – Sostenere la transizione verso un’economia a basse emissioni di carbonio in tutti i settori

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>4b - Promuovere l’efficienza energetica e l’uso dell’energia rinnovabile nelle imprese.</td>
<td>OS4.2 - Riduzione dei consumi energetici e delle emissioni nelle imprese e integrazione di fonti rinnovabili (Rif. RA 4.2 AP)</td>
<td>Incentivi finalizzati alla riduzione dei consumi energetici e delle emissioni di gas climalteranti delle imprese e delle aree produttive compresa l’installazione di impianti di produzione di energia da fonte rinnovabile per l’autoconsumo, dando priorità alle tecnologie ad alta efficienza (rif. Azione 4.2.1 AP).</td>
<td>PMI in forma singola o associata.</td>
</tr>
</tbody>
</table>

Tabella 47 - Dettaglio delle priorità di investimento, degli obiettivi specifici, delle azioni e dei beneficiari relativi agli elementi del POR FESR 2014-2020 correlati all’incremento dell’efficienza energetica delle imprese e dei cicli produttivi

PSR 2014-2020

<table>
<thead>
<tr>
<th>Misura</th>
<th>Sottomisure</th>
</tr>
</thead>
<tbody>
<tr>
<td>M04 Investimenti in immobilizzazioni materiali (Art. 17)</td>
<td>04.01 supporto agli investimenti nelle aziende agricole</td>
</tr>
<tr>
<td></td>
<td>04.02 supporto agli investimenti nella trasformazione, commercializzazione e sviluppo dei prodotti agricoli</td>
</tr>
</tbody>
</table>

Tabella 48 - Elementi del PSR 2014-2020 correlati all’incremento dell’efficienza energetica delle imprese e dei cicli produttivi

PSR 2014-2020

MISURA M04 - Investimenti in immobilizzazioni materiali (Art. 17)

La misura persegue principalmente l’obiettivo di stimolare la competitività del settore agricolo e forestale. Essa
nel suo complesso ha anche un effetto indiretto sulla realizzazione di uno sviluppo territoriale equilibrato delle economie e comunità rurali, compresi la creazione e il mantenimento di posti di lavoro. La misura concorre ai seguenti obiettivi trasversali:

- Innovazione: Gli interventi previsti concorrono a migliorare l’efficienza e la competitività delle filiere produttive e la qualità dei prodotti agroalimentari.
- Ambiente: Gli investimenti produttivi di cui alle sottomisure 04.01, 04.02 e 04.03 sostengono anche il miglioramento delle prestazioni ambientali delle aziende attraverso risparmio idrico, efficienza energetica, riduzione di emissioni inquinanti, difesa del suolo dall’erosione e riutilizzo di scarti e sottoprodotti.

SOTTOMISURA M4.01 SUPPORTO AGLI INVESTIMENTI NELLE AZIENDE AGRICOLE

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il tipo di operazione persegue l’obiettivo di:</td>
<td>Sono beneficiari del sostegno dell’operazione le imprese agricole singole e associate.</td>
</tr>
<tr>
<td>• migliorare l’efficienza economica aziendale;</td>
<td></td>
</tr>
<tr>
<td>• accrescere il valore aggiunto aziendale tramite la trasformazione in azienda e la vendita diretta in azienda dei prodotti aziendali;</td>
<td></td>
</tr>
<tr>
<td>• migliorare le prestazioni ambientali aziendali con particolare riferimento a risparmio idrico, energetico, riduzione delle emissioni inquinanti, difesa del suolo dall’erosione;</td>
<td></td>
</tr>
<tr>
<td>• miglioramento delle condizioni di sicurezza del lavoro.</td>
<td></td>
</tr>
</tbody>
</table>

Sono ammissibili le spese relative ad investimenti finalizzati alla produzione di energia elettrica o termica da destinarsi esclusivamente all’utilizzo aziendale, attraverso lo sfruttamento di fonti energetiche rinnovabili (solare, eolico) e/o di biomasse solo derivanti da sottoprodotti e/o residui, di origine prevalentemente aziendale, derivanti dalla lavorazione di prodotti agricoli e forestali. I suddetti impianti devono essere commisurati alle esigenze energetiche, su base annuale, relative ai cicli produttivi agricoli dell’azienda agricola interessata. È escluso qualsiasi sostegno alla produzione di biocombustibili derivanti da produzione agricola dedicata.

La produzione di energia è limitata ai combustibili derivanti da scarti aziendali o di origine locale, al fine di minimizzare le necessità di trasporto, e derivanti altresì da una gestione attiva delle foreste, in modo da favorire l’avvio di filiere corte. Gli impianti funzionanti a biomasse dovranno sfruttare scarti di produzione agricola, agroindustriale o forestale locale, minimizzando le necessità di trasporto. Con il termine “locale” si intende una distanza di non più di 70 km tra il luogo di produzione e il luogo di utilizzo; Gli investimenti in impianti per la produzione di energia, il cui principale obiettivo è la produzione di energia elettrica dalle biomasse sono ammissibili al sostegno solo se è utilizzata una percentuale di energia termica pari almeno al 40%, ai sensi dell’articolo 13 del regolamento di esecuzione (UE) n. 807/2014 della Commissione.

SOTTOMISURA M04.02 SUPPORTO AGLI INVESTIMENTI NELLA TRASFORMAZIONE, COMMERCIALIZZAZIONE E SVILUPPO DEI PRODOTTI AGRICOLI

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il tipo di operazione persegue l’obiettivo di:</td>
<td>Sono beneficiarie del sostegno dell’operazione le imprese che trasformano e commercializzano i prodotti agricoli di cui all’Allegato I del Trattato sul Funzionamento dell’Unione Europea (TFUE).</td>
</tr>
<tr>
<td>• migliorare l’efficienza della filiera, con particolare riferimento alla creazione o consolidamento di sbocchi di mercato stabili e duraturi per i produttori del prodotto di base;</td>
<td></td>
</tr>
<tr>
<td>• migliorare l’efficienza economica aziendale;</td>
<td></td>
</tr>
<tr>
<td>• migliorare le prestazioni ambientali aziendali con particolare riferimento a risparmio idrico, energetico, riduzione delle emissioni inquinanti, riutilizzo degli scarti e dei sottoprodotti;</td>
<td></td>
</tr>
<tr>
<td>• migliorare le condizioni di sicurezza del lavoro;</td>
<td></td>
</tr>
<tr>
<td>• favorire l’adesione a sistemi di qualità certificata in base a norme europee,</td>
<td></td>
</tr>
</tbody>
</table>
Sono ammissibili gli investimenti finalizzati alla produzione di energia elettrica o termica da destinarsi esclusivamente all’utilizzo aziendale, attraverso lo sfruttamento di fonti energetiche rinnovabili: solare, eolico o di biomasse solo derivanti da sottoprodotti derivanti dalla trasformazione, prevalentemente aziendale, di prodotti agricoli o forestale.

Gli impianti devono essere commisurati alla dimensione dell’azienda e alle esigenze energetiche relative ai cicli produttivi su base annuale. È escluso qualsiasi sostegno per impianti che utilizzino biocombustibili derivanti da produzione agricola dedicata. Limitatamente agli investimenti il cui principale obiettivo è la produzione di energia elettrica, questi sono ammissibili al sostegno solo se è utilizzata una percentuale di energia termica pari almeno al 40%, ai sensi dell’articolo 13 del regolamento di esecuzione (UE) n. 807/2014 della Commissione.

6.2.4. La co/trigenerazione ed il teleriscaldamento

La cogenerazione indica un processo di produzione ed utilizzo combinato di energia elettrica (e/o meccanica) ed energia termica attraverso un unico dispositivo; è un sistema tecnologico efficace per l’ottimizzazione dei consumi energetici. La cogenerazione utilizza sistemi di generazione tradizionali (ad es. motori a combustione interna, turbine a vapore, turbine a gas, cicli combinati…) in cui l’energia termica prodotta viene recuperata e riutilizzata (ad es. per usi industriali, teleriscaldamento, etc…).

Il beneficio della cogenerazione risiede quindi proprio nel minor consumo di energia primaria rispetto alla produzione separata delle medesime quantità di energia e calore.

Storicamente la cogenerazione nasce per applicazioni industriali presso centrali termoelettriche di media taglia (5-50 MW). Negli ultimi decenni il trend tecnologico si è orientato maggiormente verso impianti ed applicazioni più piccole (35 – 1.000 kW) privilegiando come motori primi piccoli gruppi turbogas oppure motori a scoppio. In Italia un primo esempio di applicazione della micro-cogenerazione su scala quasi domestica è stato il TOTEM realizzato nel 1973 dal Centro Ricerche Fiat utilizzando il motore della Fiat 127, di cui sono stati prodotti circa 5.000 esemplari (ne restano operativi centinaia di unità).

La più recente innovazione in questo campo è stato il lancio sul mercato tedesco del progetto “Schwarmstrom” (letteralmente “elettricità da sciame”), di micro-cogenerazione domestica offerta dalla
Volkswagen. La proposta consiste nell’offrire ed installare presso le utenze residenziali un cosiddetto “ZuhauseKraftwerke” (“centrale elettrica di casa”), ovvero un micro-cogeneratore a gas, in modo da coprire il fabbisogno sia elettrico sia termico dell’utenza. L’obiettivo è gestire la vendita dell’elettricità prodotta sul mercato elettrico tedesco come un’unica grande centrale elettrica “virtuale” da 2.000 MW, in modo da realizzare marcati vantaggi economici sfruttando un sistema “smart-grid” con logica di generazione distribuita che si coniuga bene con la non programmabilità di eolico e solare fotovoltaico.

Rispetto alla normale generazione separata di energia elettrica e calore, la cogenerazione produce un **risparmio di fonte primaria (e di emissioni di CO₂) di circa il 35-40%** derivante dall’utilizzo del calore refluo altrimenti disperso nell’ambiente e dalla sostituzione del combustibile che altrimenti verrebbe impiegato per generare in modo separato il calore.

La convenienza di installazione di un micro-cogeneratore, risulta maggiore laddove si verifica un fabbisogno di calore abbastanza costante e consistente durante gran parte dell’anno e pertanto costituisce un’applicazione ottimale nel caso di strutture quali ad esempio ospedali, centri commerciali, aziende agricole, strutture sportive, alberghi, case di cura e grandi condomini.

Nel caso in cui l’energia termica utile di un impianto cogenerativo venga utilizzata anche per la produzione di freddo si parla di “trigenerazione”. Un impianto di trigenerazione è costituito da un normale impianto di cogenerazione abbinato ad un gruppo frigorifero ad assorbimento. In particolare, la combinazione di questi due tipi di impianto consente di trasformare (in tutto o in parte) in freddo l’energia termica prodotta dal cogeneratore.

Generalmente il freddo prodotto viene trasportato ed inviato verso l’utenza attraverso un circuito ad acqua refrigerata per il condizionamento o per un processo industriale. Lo sfruttamento del calore utile prodotto dall’impianto di cogenerazione anche per il raffrescamento permette di massimizzare lo sfruttamento dell’energia termica, rendendo conveniente un impiego dell’impianto per un numero maggiore di ore all’anno.

![Diagramma Sankey](image.png)

Figura 22 - Diagramma Sankey (di flusso) di un impianto di Trigenerazione. Fonte: InterEnergy

Gli **ambiti applicativi** per le tecnologie della mini e micro-cogenerazione e trigenerazione comprendono i settori delle grandi comunità come quello ospedaliero, la grande distribuzione (centri commerciali, ipermercati), il turistico-alberghiero, le grandi strutture sportive e l’agricoltura (ad es. aziende agricole e coltivazioni in serre).
In generale il limite alle dimensioni di impianto si pone intorno ai 2-3 MW, poiché fino a questo limite di potenza è relativamente facile trovare utenti per l'energia termica ottenuta a valle della produzione elettrica dell'impianto, che normalmente viene immessa nella rete nazionale.

La convenienza economica di questi impianti è condizionata dal numero di ore di esercizio a piena potenza del sistema. Concretamente, per raggiungere la convenienza, la domanda di freddo deve essere consistente rispetto alla potenza nominale dell'impianto e presente durante tutto l’arco dell’anno.

Alla produzione combinata di energia elettrica e calore vengono attribuite due diverse forme di incentivazione ed una serie di altre facilitazioni (tra le quali l’agevolazione fiscale in materia di tassazione del reddito di impresa). In particolare, con l’entrata in vigore del DM 5 settembre 2011 gli incentivi riconosciuti al risparmio di energia primaria ottenuto da un impianto di Cogenerazione ad Alto Rendimento sono i Certificati Bianchi. Nel periodo gennaio - dicembre 2013, il GSE ha rilasciato per la contrattazione sul mercato dei titoli di efficienza energetica circa 270.000 TEE tipo II CAR relativi anche ad anni di produzione precedenti.41

Gli impianti di cogenerazione abbinati al teleriscaldamento hanno potuto accedere ai Certificati Verdi fino al 1 gennaio 2016. L’attuale Tariffa Omnicomprensiva (DM 23 giugno 2016) che ha sostituito i Certificati Verdi, non è applicabile alla cogenerazione. Un’ulteriore opportunità per questo tipo di tecnologia è costituita dai SEU (Sistemi Efficienze di Utenza) di cui alla Delibera AEEG (oggi AEEGSI) n. 578/2013: si tratta di sistemi di autoconsumo per i quali nello stesso sito sono presenti un produttore ed un consumatore che possono essere anche soggetti diversi. Il vantaggio di questi sistemi consiste nella riduzione, rispetto ai sistemi tradizionali, degli oneri legati all’energia consumata in loco, secondo quanto disciplinato dalla L n. 116/2014.

Un impianto a cogenerazione o a trigenerazione si coniuga ottimamente con una rete di teleriscaldamento che consente di distribuire calore generato attraverso una rete interrata di tubazioni all’interno delle quali scorre un vettore termico come l’acqua calda, acqua surriscaldata oppure vapore.

Con teleriscaldamento/teleraffreddamento si intende una rete di tubazioni, quasi sempre a circuito chiuso che permette di trasportare calore/freddo a distanza (tramite fluidi termovettori quali acqua o vapor acqueo surriscaldati) fino ai singoli utilizzatori. Il calore/freddo distribuito all’utenza viene prodotto da apposite centrali o recuperato da stabilimenti dedicati a scopi produttivi diversi.

Il calore prodotto viene trasportato attraverso le reti di teleriscaldamento, viene quindi ceduto agli utenti attraverso appositi scambiatori di calore contabilizzato con appositi strumenti di misura e quindi periodicamente fatturato all’utenza.

L’esercizio commerciale di una rete di teleriscaldamento o teleraffrescamento richiede le seguenti operazioni:

- produzione calore/freddo;
- trasporto e distribuzione a distanza;
- cessione all’utenza;
- contabilizzazione e fatturazione.

La centrale termica può essere comunque costituita da una normale caldaia, oppure da una qualsiasi altra fonte di calore (rinnovabile o non-rinnovabile) di potenza adeguata42.

In questo modo il calore distribuito dalla rete rende superfluo e sostituisce le normali caldaie individuali presenti nei singoli edifici d’utenza.

Le reti di teleriscaldamento consentono di risparmiare sia economicamente, grazie all’assenza delle spese di gestione e manutenzione proprie degli impianti termici, che da un punto di vista energetico. Si ottiene un abbattimento delle emissioni di CO₂ se la centrale termica utilizza una fonte rinnovabile oppure è costituita

41 Fonte: ‘Rapporto Annuale sul meccanismo dei Certificati Bianchi Gennaio-Dicembre 2013’ del GSE
da un impianto cogenerativo, e comunque delle emissioni inquinanti, poiché un unico impianto centralizzato, dotato di avanzati sistemi di abbattimento dei fumi, prende il posto di molte caldaie individuali spesso inefficienti, oltre che una maggiore sicurezza e affidabilità della fornitura. I benefici ambientali aumentano se la centrale termica è alimentata da biomassa forestale di origine locale.

La convenienza economica di una rete di teleriscaldamento è condizionata dalla presenza nelle vicinanze (entro 3 km dalla generazione) di un bacino d’utenza disposto ad allacciarsi alla rete, di una domanda di calore adeguata per gran parte dell’anno e dalla disponibilità a basso costo della fonte primaria (combustibile o altro) da impiegare nell’impianto, possibilmente con più fonti di approvvigionamento a scelta.

Un altro elemento da tenere in considerazione è il consenso dei cittadini alla realizzazione dei progetti di teleriscaldamento, tenendo presente che la posa delle reti di teleriscaldamento comporta inevitabili disagi dovuti alla realizzazione di importanti opere di scavo e alle conseguenti modifiche della viabilità, avvenendo tipicamente in ambiti già antropizzati.

La posa delle reti, però, consente contestualmente di intervenire sugli impianti idrici ed elettrici esistenti e di fornire agli utenti del teleriscaldamento nuovi servizi. Lo scavo di strade e marciapiedi, infatti, favorisce la manutenzione di sotto-servizi come acquedotti, linee elettriche e telefoniche, e diventa spesso un’occasione per la posa di fibre ottiche, che spesso non vengono realizzate ex novo proprio a causa degli alti costi delle opere di scavo.

In Liguria è presente una rete di teleriscaldamento alimentata dalla Centrale di Cogenerazione di Sampierdarena.

Il D Lgs n. 102/2014 ((successivamente integrato dal D Lgs n.141/2016), di recepimento della Direttiva 2012/27/UE prevede che nel momento in cui un’impresa situata in prossimità di reti di teleriscaldamento o in prossimità di impianti cogenerativi ad alto rendimento sia soggetta a diagnosi energetica, il documento debba contenere anche “una valutazione della fattibilità tecnica, della convenienza economica e del beneficio ambientale, derivante dall’utilizzo del calore cogenerato o dal collegamento alla rete locale di teleriscaldamento”.

L’art. 29 della L. n. 388/2000 aveva disposto una particolare agevolazione (poi ridotta dal D PCM 20 febbraio 2014) a favore degli utenti che si collegano ad una rete di teleriscaldamento, alimentata con energia geotermica o con biomassa, concedendo un contributo sotto forma di credito di imposta per ogni kW prodotto.

Inoltre, nel caso di interventi di riqualificazione energetica di edifici esistenti che permettono il raggiungimento di un indice di prestazione energetica per la climatizzazione invernale non superiore ai valori definiti dal DM 11 marzo 2008, le attuali norme in vigore permettono la detrazione fiscale del 65% della spesa.

Un’altra tecnologia innovativa è costituita dal teleraffrescamenato che invece di erogare calore per riscaldare le strutture servite, eroga acqua refrigerata (con temperatura fra 4-10°C) verso le strutture utenti quali edifici residenziali e del terziario o strutture industriali.

Il servizio di teleraffrescamenato può essere realizzato in due modi differenti:

- producendo il freddo in una centrale frigorifera e distribuendo acqua refrigerata presso le utenze servite (ad una temperatura di 6°C), che si configura quale vero e proprio sistema di teleraffrescamenato;
- distribuendo calore generato da una centrale termica (per esempio da una caldaia o un gruppo cogeneratore) attraverso una normale rete di teleriscaldamento e realizzando il servizio freddo localmente attraverso gruppi frigoriferi ad assorbimento decentrati installati presso le strutture utenti e in grado di trasformare il calore in freddo.
I gruppi frigoriferi usati per la produzione del freddo possono essere gruppi frigoriferi a compressione alimentati elettricamente o gruppi frigoriferi ad assorbimento, in grado di trasformare in freddo l’energia termica (calore) proveniente da una fonte termica, per esempio da un gruppo cogeneratore, realizzando in questo modo un impianto di trigenerazione con conseguenti rilevanti risparmi di energia elettrica.

La rete di distribuzione può essere costituita da soli due tubi (uno di mandata, e l’altro di ritorno) cosicché la stessa rete potrà fornire due servizi (calore e freddo), ma non contemporaneamente, bensi in alternativa l’uno all’altro. Oppure la rete può essere costituita da quattro tubi, due di questi potranno essere impiegati per il servizio calore, mentre la seconda coppia di tubi (sempre mandata e ritorno) potrà fornire il servizio freddo (si veda Figura 23). In questo modo diventa possibile soddisfare contemporaneamente sia le richieste di calore che di freddo.

![Diagrama di teleriscaldamento e teleraffrescamento a quattro tubi](http://www.ingenieros.es)

In quest’ultimo caso (fornitura contemporanea di calore e di freddo) l’impianto di generazione di calore e freddo può realizzare importanti risparmi energetici ed economici attraverso la possibilità di recuperare il calore di condensazione e di evaporazione, in presenza di carichi termici contemporanei di segno opposto. In pratica diventa possibile “riciclare” il calore refluo prodotto dall’impianto frigorifero, contribuendo in questo modo gratuitamente al servizio calore, oppure viceversa riciclare il freddo refluo prodotto dall’impianto a pompa di calore contribuendo in questo modo gratuitamente al servizio freddo. Una variante applicabile a tutte le configurazioni di centrale (sia frigorifere che a pompa di calore) è quella di sfruttare per lo smaltimento della grande quantità di calore (o freddo) refluo dissipato dalla centrale un vicino corpo idrico. Per esempio nei casi in cui la centrale (o struttura utente) si trovi vicino al mare, può essere conveniente impiegare l’acqua di mare per dissipare il calore (o freddo) refluo della centrale, sfruttando in questo modo le prestazioni di scambio termico dell’acqua molto migliori rispetto a quelle dell’aria, per realizzare ulteriori significativi aumenti di efficienza e risparmi di energia.

Negli impianti raffreddati ad acqua è adottabile il cosiddetto “free cooling” (raffrescamento gratuito), una particolare modalità di funzionamento che utilizza l’acqua fredda proveniente dal corpo idrico (o mare) direttamente per raffreddare l’acqua circolante nella rete di teleraffrescamento mediante semplici
scambiatori di calore. In questo modo si evita di far funzionare i gruppi frigoriferi realizzando un ulteriore rilevante risparmio di energia.

Le principali criticità legate alla realizzazione di una rete di teleriscaldamento o di teleraffreddamento sono legate alla scarsa stabilità dei vincoli normativi e delle conseguenti incertezze economiche, soprattutto trattandosi di investimenti a lungo termine ed agli utenti che al momento del completamente e la messa in servizio della rete, potrebbero non essere disponibili all’allaccio per fruire (a pagamento) del servizio, impedendo in questo modo il recupero dell’investimento. A titolo di esempio si riporta il caso della Danimarca che per superare questa barriera ha introdotto l’obbligo di allaccio dell’utenza situata in prossimità di una rete di teleriscaldamento o in alternativa l’obbligo del pagamento da parte dell’utenza non allacciata di una quota dei costi di investimento della rete (“Heat Supply Act, 1979”).

Azioni per la promozione di co/trigenerazione e teleriscaldamento/teleraffreddamento
La Regione Liguria intende promuovere lo sviluppo di progetti che prevedono l’applicazione di queste tecnologie; ai fini dello sviluppo di distretti urbani caratterizzati da un uso efficiente dell’energia la Regione potrà intervenire attraverso specifici finanziamenti anche in coerenza con le priorità individuate nel programma “Horizon 2020” dedicato alle “Smart Cities and Communities”. In particolare attraverso fondi a valere sulla programmazione POR-FESR 2014-2020 (Tabella 50 e Tabella 51) e PSR 2014-2020 (Tabella 52 e Tabella 53) potranno essere attivate misure specifiche per il ricorso a tali opzioni tecnologiche.

<table>
<thead>
<tr>
<th>POR-FESR 2014-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asse</td>
</tr>
<tr>
<td>-------</td>
</tr>
</tbody>
</table>

#
Tabella 50 - Elementi del POR FESR 2014-2020 correlati alla realizzazione di impianti di cogenerazione e trigenerazione, teleriscaldamento e teleraffrescamento

POR-FESR 2014-2020

<table>
<thead>
<tr>
<th>Asse</th>
<th>Obiettivo Tematico</th>
<th>Priorità</th>
<th>Obiettivo Specifico</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ENERGIA</td>
<td>04 Sostenere la transizione verso un’economia a basse emissioni di carbonio in tutti i settori.</td>
<td>4c Sostenere l’efficienza energetica, la gestione intelligente dell’energia e l’uso dell’energia rinnovabile nelle infrastrutture pubbliche, compresi gli edifici pubblici, e nel settore dell’edilizia abitativa.</td>
<td>4.1 Riduzione dei consumi energetici negli edifici e nelle strutture pubbliche o ad uso pubblico, residenziali e non residenziali e integrazione di fonti rinnovabili (Rif. RA 4.1 AP).</td>
</tr>
</tbody>
</table>

| 6 CITTÀ | 04 Sostenere la transizione verso un’economia a basse emissioni di carbonio in tutti i settori. | 4c Sostenere l’efficienza energetica, la gestione intelligente dell’energia e l’uso dell’energia rinnovabile nelle infrastrutture pubbliche, compresi gli edifici pubblici, e nel settore dell’edilizia abitativa. | 6.2 Riduzione dei consumi energetici negli edifici e nelle strutture pubbliche o ad uso pubblico, residenziali e non residenziali e integrazione di fonti rinnovabili (Rif. RA 4.1 AP). |

POR-FESR 2014-2020

ASSE 4 - ENERGIA

O.T. 04 – Sostenere la transizione verso un’economia a basse emissioni di carbonio in tutti i settori

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
</table>

ASSE 6 - CITTÀ

O.T. 04 – Sostenere la transizione verso un’economia a basse emissioni di carbonio in tutti i settori

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>4c - Sostenere l’efficienza energetica, la gestione</td>
<td>OS6.2 - Riduzione dei consumi energetici</td>
<td>Promozione dell’eco-efficienza e riduzione di</td>
<td>Città di Savona, Imperia, Sanremo</td>
</tr>
</tbody>
</table>
Sottomisure dell'edilizia

Sono edifici biomasse zone pubbliche, compresi nelle strutture pubbliche o ad uso pubblico, residenziali e non residenziali e integrazione di fonti rinnovabili (Rif. RA 4.1 AP).

consumi di energia primaria negli edifici e strutture pubbliche (Rif. Azione 4.1.1 AP)

- Adozione di soluzioni tecnologiche per la riduzione dei consumi energetici delle reti di illuminazione pubblica, promuovendo installazioni di sistemi automatici di regolazione (sensori di luminosità, sistemi di telecontrollo e di telegestione energetica della rete) (Rif. Azione 4.1.3 AP).

Tabella 51 - Detttaglio delle priorità di investimento, degli obiettivi specifici, delle azioni e dei beneficiari relativi agli elementi del POR FESR 2014-2020 correlati alla realizzazione di impianti di cogenerazione e trigenerazione, teleriscaldamento e teleraffrescamento

<table>
<thead>
<tr>
<th>PSR 2014-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>M06 Sviluppo delle aziende agricole e delle imprese (Art. 19)</td>
</tr>
<tr>
<td>M07 Servizi di base e rinnovamento dei villaggi nelle zone rurali (Art. 20)</td>
</tr>
</tbody>
</table>

Tabella 52 - Elementi del PSR 2014-2020 correlati alla realizzazione di impianti di cogenerazione e trigenerazione, teleriscaldamento e teleraffrescamento

PSR 2014-2020

MISURA M06 – Sviluppo delle aziende agricole e delle imprese (Art. 19)

La misura persegue l’obiettivo di realizzare uno sviluppo territoriale equilibrato delle economie e comunità rurali, compresi la creazione e il mantenimento di posti di lavoro. Essa ha un ruolo molto importante nel rivitalizzare le aree rurali della Liguria integrando diversi settori e attività.

La misura contribuisce al raggiungimento degli obiettivi trasversali relativi all’innovazione e ai cambiamenti climatici attraverso il finanziamento di caldaie a biomasse e relative reti di distribuzione del calore che incentivano l’utilizzo razionale di biomasse forestali con effetti benefici sull’equilibrio idro-geologico e sul sequestro del carbonio. Anche il ricambio generazionale nel settore agricolo e forestale, che porta nuove energie e maggiore predisposizione al cambiamento, contribuisce all’innovazione.

SOTTOMISURA M06.04(5c) INVESTIMENTI NELLA CREAZIONE DI PICCOLE IMPRESE IN ZONE RURALI

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
</table>
| L’operaione Intende favorire la creazione o lo sviluppo di piccole imprese nelle zone rurali, con i seguenti obiettivi:
- creare o stabilizzare posti di lavoro;
- favorire lo sviluppo di imprese forestali;
- favorire la produzione di energia termica a partire da biomasse forestali di origine locale (approvvigionamento della biomassa in un raggio di 70 Km).
L’operaione riguarda quindi la produzione di energia termica a partire da biomasse forestali di origine locale.
Sono ammissibili i costi relativi a:
- acquisto e installazione di caldaie a biomassa, compresi i manufatti edili necessari, per la produzione di energia termica di potenza non superiore a 5 MW termici;
Sono beneficiari del sostegno dell’operaione Micro e Piccole Imprese aventi sede nelle zone rurali C e D della Liguria con esclusione delle aziende agricole. |

102
realizzazione della rete di distribuzione del calore.
Ai fini di ridurre l’impatto ambientale il sostegno è limitato agli impianti che possono garantire un approvvigionamento della biomassa in un raggio di 70 Km.
La tipologia di operazione è operativa esclusivamente nelle aree rurali intermedie (aree C) e nelle aree rurali con problemi di sviluppo (aree D), come definite dall’Accordo di Partenariato alla Sezione 1A - capitolo 1.1.4 “sfide territoriali”.
Gli investimenti sostenuti nell’ambito di questa operazione devono essere conformi all’articolo 13 del regolamento delegato (UE) n. 807/2014 con particolare riferimento alla lettera c) - efficienza energetica - e lettera e) per la quale si stabilisce che non è ammesso l’utilizzo di cereali ed altre colture amidacee, zucchine e oleaginosse e altre colture agricole e forestali dedicate, ma solo di biomasse legnose (non da colture dedicate), sottoprodotto agricoli (paglia, stocchi, residui di potatura, ecc.) e agro-industriali (sensa, vinacce, ecc.).

MiSura 07 – Servizi di base e rinnovamento dei villaggi nelle zone rurali (Art. 20)
La misura persegue l’obiettivo di realizzare uno sviluppo economico territoriale delle comunità rurali compresi la creazione e il mantenimento di posti di lavoro. Essa sostiene esclusivamente interventi nelle aree rurali intermedie (aree C) e nelle aree rurali con problemi di sviluppo (aree D).

Sottomisura 07.02 Infrastrutture EsseNZiali alle popolazioni rurali

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>L’operazione offre sostegno ad investimenti finalizzati alla creazione, al miglioramento o all’espansione di ogni tipo di infrastrutture su piccola scala, compresi gli investimenti nelle energie rinnovabili e nel risparmio energetico. Sono ammessi ai sostegno soltanto gli investimenti di realizzazione delle infrastrutture su piccola scala, relativi a impianti per la produzione e la distribuzione di energia termica proveniente da biomasse forestali e/o da scarti e sottoprodotto agricoli e agro-industriali, compreso il trattamento delle biomasse per renderle utilizzabili a fini energetici (cippatura, disidratazione, ecc.). Sono inoltre ammessi gli investimenti per la costruzione, miglioramento o ampliamento di strade d’accesso ai borghi rurali e loro viabilità interna comprese le opere accessorie quali fognatura e pubblica illuminazione. Relativamente agli investimenti per la realizzazione di impianti per la produzione di energia termica:</td>
<td></td>
</tr>
<tr>
<td>• devono essere realizzati e gli utenti devono essere situati esclusivamente nelle aree rurali intermedie (aree C) e nelle aree rurali con problemi di sviluppo (aree D), come definite dall’Accordo di Partenariato alla Sezione 1A - capitolo 1.1.4 “sfide territoriali”;</td>
<td></td>
</tr>
<tr>
<td>• devono essere conformi alle norme della Legge Regionale. n. 38 del 30 dicembre 1998 “Disciplina della valutazione di impatto ambientale” e ss.mm.e.ii ;</td>
<td></td>
</tr>
<tr>
<td>Inoltre:</td>
<td></td>
</tr>
<tr>
<td>• sono ammissibili a finanziamento impianti di potenza non superiore ad 5 MWt;</td>
<td></td>
</tr>
<tr>
<td>• è escluso l’impiego di cereali ed altre colture amidacee, zucchine, oleaginosse, inclusi i biocarburanti e altre colture agricole e forestali dedicate;</td>
<td></td>
</tr>
<tr>
<td>• devono rispettare criteri minimi di efficienza energetica;</td>
<td></td>
</tr>
<tr>
<td>• l’energia termica prodotta dagli impianti finanziati con la presente operazione è utilizzata esclusivamente a servizio di edifici pubblici.</td>
<td></td>
</tr>
<tr>
<td>Il sostegno per le reti di distribuzione di energia termica riguarda solo gli investimenti relativi alla parte pubblica della rete. Gli allacciamenti delle singole utenze sono ammissibili solo se si tratta di edifici pubblici o impianti pubblici.</td>
<td>• Comuni singoli o associati;</td>
</tr>
<tr>
<td>• altri enti pubblici (province, enti parco, città metropolitane, ecc.);</td>
<td></td>
</tr>
<tr>
<td>• per quanto riguarda gli acquedotti per uso potabile, sono ammissibili anche consorzi rurali o di miglioramento fondiario o altre forme associative di livello locale fra gli utenti dell’impianto.</td>
<td></td>
</tr>
</tbody>
</table>
Per quanto riguarda gli aspetti ambientali legati all’installazione di impianti di cogenerazione e teleriscaldamento si rimanda alla relativa scheda dell’Allegato 2 al presente documento

6.3. Le fonti rinnovabili: il potenziale, gli obiettivi e gli strumenti

Lo sviluppo delle fonti rinnovabili rappresenta, insieme all’efficienza energetica, lo strumento cardine per la lotta contro il cambiamento climatico, obiettivo centrale della politica energetica europea tracciata dal programma 20-20-20.

Tale politica ha individuato obblighi specifici e vincolanti per gli Stati Membri in merito al futuro sviluppo del settore delle energie rinnovabili, senza però definire sanzioni nel caso in cui gli obiettivi non vengano raggiunti.

Come noto il DM 15 marzo 2012 sul “Burden Sharing”, ha trasferito parte dei suddetti obblighi alle singole regioni e per la Liguria è stato individuato un obiettivo in base al quale il 14,1% dei consumi finali lordi regionali del 2020 dovranno essere ottenuti da fonte rinnovabile.

Il quadro attuale di sfruttamento delle fonti rinnovabili in regione non è particolarmente favorevole nonostante il sistema di incentivi statali sia stato in questi ultimi anni vantaggioso: ciò può essere legato alle caratteristiche orografiche, paesaggistiche e ambientali del territorio ligure, al quadro normativo frammentato per la concessione delle autorizzazioni (vista anche la continua evoluzione della normativa nazionale del settore), oltre alle difficoltà correlate all’attuazione delle singole tecnologie (si pensi alla creazione della filiera legno-energia per lo sfruttamento della biomassa locale).

Tra le azioni messe in campo dalla Regione Liguria per favorire lo sviluppo delle fonti rinnovabili in questi anni, è significativo ricordare la rivisitazione delle norme relative al rilascio dei titoli autorizzativi e le iniziative volte a stimolare il settore attraverso bandi di finanziamento rivolti sia a privati che ad enti pubblici (si veda Capitolo 2.3 e 4.3).

L’attuale quadro socio-economico rende particolarmente difficile effettuare previsioni affidabili sul futuro sviluppo delle rinnovabili in Liguria: se da un lato infatti la crisi economica può comportare una riduzione dei consumi energetici, dall’altro riduce la capacità di investimento di enti pubblici, imprese e cittadini per l’introduzione e lo sfruttamento delle fonti rinnovabili, oltre che per l’innovazione tecnologica in generale.

La revisione del quadro degli incentivi nazionali e l’attuale difficoltà di accesso al credito delle imprese penalizza gli investimenti nel settore delle fonti rinnovabili ed, in particolare, per le fonti che richiedono investimenti iniziali significativi, quali i parchi eolici e gli impianti di cogenerazione a biomassa.

In tal senso il presente Piano intende individuare gli obiettivi generali e le linee di sviluppo del settore finalizzati all’adempimento degli obblighi normativi previsti dal DM 15 marzo 2012, individuando altresì un set di azioni specifiche regionali che saranno soggette ad approfondimenti nelle fasi attuative e di pianificazione successive, al fine di tenere.

Il Piano intende infatti declinare in modo dinamico gli indirizzi per il raggiungimento degli obiettivi al 2020, tenendo conto dell’evoluzione continua delle tecnologie e delle risposte del territorio alle politiche energetiche messe in atto a livello regionale. Ciò consentirà una rimodulazione delle linee di sviluppo ed una calibrazione delle azioni regionali in corso d’opera alla luce dei risultati ottenuti e delle esigenze del territorio, secondo un approccio di tipo bottom-up.

#
6.3.1. Le fonti rinnovabili elettriche

Il quadro degli incentivi messo in campo in questi anni a livello nazionale (Certificati Verdi, Certificati Bianchi, Conto Energia, Scambio sul posto, Ritiro dedicato e tariffa incentivante omnicomprensiva) ha favorito in particolare la realizzazione di impianti per la produzione di energia elettrica da fonti rinnovabili. Nel seguito si riportano le principali linee di sviluppo previste dal Piano per le fonti rinnovabili elettriche.

6.3.1.1. Il solare fotovoltaico

Diversamente da quanto programmato nel PEAR 2003, che prevedeva per questa tecnologia un modesto potenziale di espansione a causa degli elevati costi, negli ultimi anni il solare fotovoltaico ha vissuto in Italia una straordinaria crescita dovuta all’istituzione di incentivi nazionali ed alla sensibile riduzione dei costi della tecnologia, divenuta possibile a seguito della maturazione del mercato e delle relative economie di scala. A fronte di una previsione di crescita di pochi MW del PEAR 2003 si è pertanto giunti in Liguria ad un parco installato nel 2012 pari a 74 MW.

D’altro canto, se confrontato con i livelli raggiunti in ambito nazionale, la potenza fotovoltaica installata in Liguria pro-capite risulta di circa sei volte inferiore alla media nazionale (Liguria: 47 Wp/abitante; Media Italia: 276 Wp/abitante - vedi Figura 25).

Da un lato le caratteristiche orografiche, paesistiche e ambientali del territorio regionale mal si prestano alla realizzazione di grandi impianti soprattutto a terra; dall’altro il clima piuttosto soleggiato, e l’estensione del territorio ligure in direzione est-ovest, con prevalenza di pendii esposti in modo ottimale a sud, creano condizioni particolarmente favorevoli per l’applicazione delle tecnologie solari. Pertanto si può prevedere un mercato ligure fortemente orientato a impianti medio-piccoli disposti prevalentemente sulle coperture di fabbricati e capannoni. Questa tendenza è già evidente dai dati del Rapporto Statistico 2012 sul solare fotovoltaico pubblicato dal GSE, in base ai quali la Liguria presenta alcune anomalie rispetto al panorama nazionale sia per localizzazione degli impianti che per taglia (si veda Figura 26).
In merito alla taglia media, a fronte di un valore nazionale pari a 34,3 kW, gli impianti liguri hanno dimensioni medie decisamente più contenute, pari a circa 16,8 kW, superiori solo a quelli presenti in Valle d’Aosta\footnote{Rapporto Statistico 2012 sul solare fotovoltaico pubblicato dal GSE}.

Se da un lato quest’ultima caratteristica penalizza lo sviluppo dei grandi impianti a terra, dall’altro la risultante prevalenza di impianti medio-piccoli installati su edifici è già in linea con i più recenti indirizzi europei, più orientati a favorire impianti medio-piccoli distribuiti rispetto ad installazioni di grosse dimensioni, e a privilegiare la collocazione su edifici o su aree degradate da recuperare (discariche e cave dismesse).
L’obiettivo regionale per lo sviluppo della fonte solare fotovoltaica al 2020 è stato costruito a partire dallo studio “Burden sharing regionale dell’obiettivo di sviluppo delle fonti rinnovabili Piano d’Azione Nazionale per l’Energia Rinnovabile” messo a punto da ERSE. Tale studio, sul quale si basa la ripartizione regionale del Decreto Burden Sharing, attribuisce alla Liguria un obiettivo di 261 GWh/anno di energia prodotta da impianti solari fotovoltaici ed ipotizza l’installazione di impianti di piccola e media taglia sul 5÷6% delle coperture delle abitazioni civili (per la produzione di 238 GWh/anno di energia elettrica) e su aree “ marginali” ossia superfici aride o non utilizzate a fini agricoli (per la produzione di 23 GWh/anno). Secondo lo studio ERSE tali produzioni energetiche richiederebbero un incremento della potenza solare fotovoltaica installata dai 74 MW del 2012 a circa 220 MW nel 2020, coincidente con l’obiettivo di Piano al 2020. Dei 220 MW si ipotizza che circa 212 MW vengano installati su fabbricati, per una estensione di superficie captante (dei pannelli) di circa 1,5 milioni di m² (1 m²/abitante) e 8 MW installati a terra con un’occupazione di suolo pari a circa 18 ettari.

Quest’ultima quantificazione deriva da studi condotti dalla Regione Liguria relativamente alla possibile installazione di impianti fotovoltaici su cave dimesse. I risultati di tali studi sono stati oggetto degli argomenti di giunta: n. 74 del 17/12/2010 “Censimento delle cave dimesse (ad esclusione delle cave di
ardesia) sul territorio della Regione Liguria”; n. 80 in data 16/12/2011 “Indagine relativa al recupero ambientale di areali di cave dismesse e attive mediante ricomposizione morfologica”; n. 87 in data 21/12/2012 “Analisi preliminare per l’individuazione dei siti di cava, dismessi o attivi, potenzialmente idonei alla installazione di centrali fotovoltaiche per la produzione di energia elettrica”.

La scelta della Regione di privilegiare tali siti è mossa dalle seguenti considerazioni:

• l’uso a fini energetici di questi territori, spesso in condizioni di abbandono e di forte degrado, ne favorisce il recupero;

• le “Linee guida per l’autorizzazione, la valutazione ambientale, la realizzazione e la gestione degli impianti per lo sfruttamento delle fonti energetiche rinnovabili” approvate dalla Regione Liguria con DGR n. 1122 del 21/09/2012 individuano come aree preferenziali per la realizzazione degli impianti fotovoltaici a terra, siti già degradati da attività antropiche e/o da riqualificare, tra cui le ex cave prive di valori naturalistici.

Per quanto riguarda gli aspetti tecnologici, si evidenzia come i pannelli fotovoltaici più recenti con celle di silicio amorfo (a film sottili) siano in grado di sfruttare meglio la componente indiretta e diffusa della radiazione solare, e possono quindi essere collocati anche in siti con orientamenti sub-ottimali dal punto di vista del soleggiamento, garantendo comunque rendimenti accettabili. Per contro tecnologie basate sulla concentrazione della radiazione solare (fotovoltaico a concentrazione), in grado di trasformare in energia elettrica soltanto la radiazione diretta, mal si prestano alla localizzazione in siti con ombreggiamenti o condizioni climatiche variabili (presenza di nuvole) quali quelle liguri. È quindi probabile che queste ultime tecnologie resteranno marginali in Liguria, mentre il mercato continuerà ad orientarsi verso la componentistica tradizionale, che comunque ha visto, negli ultimi anni, sensibili miglioramenti dal punto di vista sia dei costi che dell’efficienza energetica.

È importante sottolineare come l’incremento della domanda di fotovoltaico a film sottili rappresenti un’interestante opportunità per lo sviluppo di nuove attività da parte delle aziende liguri che già vantano un’esperienza di rilievo proprio sulle tecnologie a film sottili e che, con il supporto della ricerca, potrebbero orientare i propri sviluppi tecnologici verso nuove applicazioni su strutture e componenti architettonici non convenzionali.

Azioni per lo sviluppo delle fonti rinnovabili elettriche: fotovoltaico

La Regione Liguria, al fine di favorire la diffusione di questa fonte rinnovabile, ha già adottato procedure autorizzative semplificate (tra cui le modifiche alla LR n. 16/2008) secondo quanto previsto dalle Linee Guida nazionali.

Ulteriori azioni normative di stimolo a tale settore verranno esaminate dalla Regione Liguria al fine di favorire, ad esempio, l’installazione di impianti fotovoltaici sulle coperture dei fabbricati esistenti nei casi di manutenzione straordinaria dei manti di copertura o dei tetti a falda.

La Regione attuerà inoltre misure specifiche per la diffusione degli impianti fotovoltaici in combinazione con azioni volte all’incremento dell’efficienza energetica a valere sulla Programmazione dei Fondi Strutturali POR FESR 2014-2020 e sul Programma Sviluppo Rurale PSR 2014-2020 con riferimento alle misure indicate nelle tabelle seguenti (Tabella 54,Tabella 55 e Tabella 56, Tabella 57).

<table>
<thead>
<tr>
<th>POR-FESR 2014-2020</th>
<th>Asse</th>
<th>Obiettivo Tematico</th>
<th>Priorità</th>
<th>Obiettivo Specifico</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ENERGIA</td>
<td>04</td>
<td>Sostenere la transizione verso un’economicità a basse emissioni di carbonio in tutti i settori.</td>
<td>4b</td>
<td>Promuovere l’efficienza energetica e l’uso dell’energia rinnovabile nelle imprese. 4.2 Riduzione dei consumi energetici e delle emissioni nelle imprese e integrazione di fonti rinnovabili (Rif. RA 4.2 AP).</td>
</tr>
<tr>
<td></td>
<td>4c</td>
<td>Sostenere l’efficienza</td>
<td>4.1</td>
<td>Riduzione dei consumi</td>
</tr>
</tbody>
</table>
Obiettivo

<table>
<thead>
<tr>
<th>Beneficiari</th>
<th>Azioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imprese, edifici pubbliche, infrastrutture pubbliche</td>
<td>Sostenere la transizione verso un’economia a basse emissioni di carbonio in tutti i settori.</td>
</tr>
</tbody>
</table>

Priorità

<table>
<thead>
<tr>
<th>Asse</th>
<th>Obiettivo Tematico</th>
<th>Priorità</th>
<th>Obiettivo Specifico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>energetica, la gestione intelligente dell’energia e l’uso dell’energia rinnovabile nelle infrastrutture pubbliche, compresi gli edifici pubblici, e nel settore dell’edilizia abitativa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>energetici negli edifici e nelle strutture pubbliche o ad uso pubblico, residenziali e non residenziali e integrazione di fonti rinnovabili (Rif. RA 4.1 AP).</td>
</tr>
</tbody>
</table>

Priorità di investimento

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 CITTÀ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Sostenere la transizione verso un’economia a basse emissioni di carbonio in tutti i settori.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4c</td>
<td>Sostenere l’efficienza energetica, la gestione intelligente dell’energia e l’uso dell’energia rinnovabile nelle infrastrutture pubbliche, compresi gli edifici pubblici, e nel settore dell’edilizia abitativa.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella 54 - Elementi del POR FESR 2014-2020 correlati alla promozione del solare fotovoltaico

Obiettivo

ASSE 4 - ENERGIA

O.T. 04 – Sostenere la transizione verso un’economia a basse emissioni di carbonio in tutti i settori

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>4b</td>
<td>OS4.2 - Riduzione dei consumi energetici e delle emissioni nelle imprese e integrazione di fonti rinnovabili (Rif. RA 4.2 AP).</td>
<td>Incentivi finalizzati alla riduzione dei consumi energetici e delle emissioni di gas climalteranti delle imprese e delle aree produttive compresa l’installazione di impianti di produzione di energia da fonte rinnovabile per l’autoconsumo, dando priorità alle tecnologie ad alta efficienza (rif. Azione 4.2.1 AP).</td>
<td>PMI in forma singola o associata.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
</table>

ASSE 6 - CITTÀ

O.T. 04 – Sostenere la transizione verso un’economia a basse emissioni di carbonio in tutti i settori
<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
</table>
| 4c - Sostenere l'efficienza energetica, la gestione intelligente dell'energia e l'uso dell'energia rinnovabile nelle infrastrutture pubbliche, compresi gli edifici pubblici, e nel settore dell'edilizia abitativa. | OS6.2 - Riduzione dei consumi energetici negli edifici e nelle strutture pubbliche o ad uso pubblico, residenziali e non residenziali e integrazione di fonti rinnovabili (Rif. RA 4.1 AP). | •Promozione dell'eco-efficienza e riduzione di consumi di energia primaria negli edifici e strutture pubbliche (Rif. Azione 4.1.1 AP).
•Adozione di soluzioni tecnologiche per la riduzione dei consumi energetici delle reti di illuminazione pubblica, promuovendo installazioni di sistemi automatici di regolazione (sensori di luminosità, sistemi di telecontrollo e di telegestione energetica della rete) (Rif. Azione 4.1.3 AP). | Città di Savona, Imperia, Sanremo |

Tabella 55 - Dettaglio delle priorità di investimento, degli obiettivi specifici, delle azioni e dei beneficiari relativi agli elementi del POR FESR 2014-2020 correlati alla promozione del solare fotovoltaico

<table>
<thead>
<tr>
<th>PSR 2014-2020</th>
<th>Misura</th>
<th>Sottomisure</th>
</tr>
</thead>
<tbody>
<tr>
<td>M04 Investimenti in immobilizzazioni materiali (Art. 17)</td>
<td>04.01 supporto agli investimenti nelle aziende agricole</td>
<td>04.02 supporto agli investimenti nella trasformazione, commercializzazione e sviluppo dei prodotti agricoli</td>
</tr>
</tbody>
</table>

Tabella 56 - Elementi del PSR 2014-2020 correlati alla promozione del solare fotovoltaico

PSR 2014-2020

MISURA M04 - Investimenti in immobilizzazioni materiali (Art. 17)

La misura persegue principalmente l’obiettivo di stimolare la competitività del settore agricolo e forestale. Essa nel suo complesso ha anche un effetto indiretto sulla realizzazione di uno sviluppo territoriale equilibrato delle economie e comunità rurali, compresi la creazione e il mantenimento di posti di lavoro. La misura concorre ai seguenti obiettivi trasversali:

- **Innovazione:** Gli interventi previsti concorrono a migliorare l’efficienza e la competitività delle filiere produttive e la qualità dei prodotti agroalimentari.
- **Ambiente:** Gli investimenti produttivi di cui alle sottomisure 04.01, 04.02 e 04.03 sostengono anche il miglioramento delle prestazioni ambientali delle aziende attraverso risparmio idrico, efficienza energetica, riduzione di emissioni inquinanti, difesa del suolo dall’erosione e riutilizzo di scarti e sottoprodotti.

SOTTOMISURA M4.01 SUPPORTO AGLI INVESTIMENTI NELLE AZIENDE AGRICOLE

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
</table>
| Il tipo di operazione persegue l’obiettivo di:
•migliorare l’efficienza economica aziendale;
•accrescere il valore aggiunto aziendale tramite la trasformazione in azienda e la vendita diretta in azienda dei prodotti aziendali;
•migliorare le prestazioni ambientali aziendali con particolare riferimento a risparmio idrico, energetico, riduzione delle emissioni inquinanti, difesa del suolo dall’erosione;
•miglioramento delle condizioni di sicurezza del lavoro.
Sono ammissibili le spese relative ad investimenti finalizzati alla produzione di energia elettrica o termica da destinarsi esclusivamente all’utilizzo aziendale, attraverso lo sfruttamento di fonti energetiche rinnovabili (solare, eolico) e/o di biomasse solo derivanti | Sono beneficiari del sostegno dell’operazione le imprese agricole singole e associate. |
La produzione di energia è limitata ai combustibili derivanti da scarti aziendali o di origine locale, al fine di minimizzare le necessità di trasporto, e derivanti altresì da una gestione attiva delle foreste, in modo da favorire l’avvio di filiere corte. Gli impianti funzionanti a biomasse dovranno sfruttare scarti di produzione agricola, agro-industriale o forestale locale, minimizzando le necessità di trasporto. Con il termine “locale” si intende una distanza di non più di 70 km tra il luogo di produzione e il luogo di utilizzo.

Gli investimenti in impianti per la produzione di energia, il cui principale obiettivo è la produzione di energia elettrica dalle biomasse sono ammissibili al sostegno solo se è utilizzata una percentuale di energia termica pari almeno al 40%, ai sensi dell’articolo 13 del regolamento di esecuzione (UE) n. 807/2014 della Commissione.

Tabella 57 - Dettaglio del tipo di investimento e dei beneficiari relativi agli elementi del PSR 2014-2020 correlati alla promozione del solare fotovoltaico

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sono beneficiarie del sostegno dell’operazione le imprese che trasformano e commercializzano i prodotti agricoli di cui all’Allegato I del Trattato sul Funzionamento dell’Unione Europea (TFUE).</td>
</tr>
</tbody>
</table>

La Regione Liguria provvederà inoltre alla definizione di modelli per lo sviluppo di Aree Produttive Ecologicamente Attrezzate che prevedano il ricorso a questa tecnologia.

Per quanto riguarda gli sviluppi futuri resta comunque difficile prevedere come evorrerà questo settore nei prossimi anni essendo il mercato condizionato dalla progressiva riduzione degli incentivi a livello nazionale, in gran parte controbilanciata dalla riduzione dei costi di realizzazione.
Per quanto riguarda gli aspetti ambientali legati all’installazione di tecnologie fotovoltaiche si rimanda alla relativa scheda dell’Allegato 2 al presente documento.

6.3.1.2. L’elico

Il PEAR 2003 aveva individuato per tale fonte un obiettivo al 2010 piuttosto modesto e pari ad una potenza installata di 8 MW. Questo obiettivo era stato successivamente innalzato a 120 MW con la DCR n. 3 del 3 febbraio 2009. I nuovi traguardi per lo sviluppo delle rinnovabili previsti al 2020 dal DM 15 marzo 2012 sul Burden Sharing richiedono un ulteriore significativo ampliamento del parco impiantistico destinato allo sfruttamento delle rinnovabili ed in particolare dell’elico, che rappresenta una delle tecnologie rinnovabili a minor costo di produzione. Recenti studi sul potenziale energetico di tale fonte elaborati dalla Regione Liguria hanno permesso di individuare in 400÷500 MW la potenza installabile nei prossimi anni senza incorrere in limitazioni di natura tecnologica o legate all’accessibilità dei siti.

In merito alle scelte tecnologiche è opportuno considerare i seguenti aspetti:

1. la producibilità di un aerogeneratore dipende da due fattori geometrici:
 - la superficie “spazzolata” dalle pale, ossia l’area del cerchio percorso dalle pale nel loro movimento rotatorio; sia la potenza che l’energia prodotta sono pertanto proporzionali al quadrato del diametro, ovvero un rotore di diametro doppio produce 4 volte più energia.
 - l’altezza del mozzo, ossia la quota dal piano di campagna dell’asse del rotore, che corrisponde in prima approssimazione all’altezza della torre di sostegno dell’aerogeneratore; la velocità del vento è infatti influenzata dal cosiddetto strato limite terrestre e cresce con la quota; pertanto, innalzando il mozzo, il rotore intercetterà venti con velocità maggiori, incrementando la potenza e l’energia generata. Anche per questo motivo le macchine di grossa taglia sono più efficienti, come è peraltro verificabile dall’analisi dei dati di targa degli aerogeneratori in commercio.

2. il DM 10/9/2010 - “Linee guida per l’autorizzazione degli impianti alimentati da fonti rinnovabili”, prescrive, tra i vincoli da rispettare per mitigare l’impatto visivo ed ambientale dei parchi eolici, una distanza minima tra le singole macchine non inferiore a 5÷7 diametri se disposte parallelamente alla direzione prevalente del vento e 3÷5 diametri nella direzione perpendicolare al vento; quindi l’occupazione di suolo della macchina varia proporzionalmente al diametro mentre la producibilità aumenta in modo più che quadratico al crescere del diametro: ciò consente di affermare che, a parità di potenza installata e di energia prodotta, un parco eolico realizzato con macchine di grande taglia richiede minore occupazione;

3. dal punto di vista economico l’investimento specifico (€/kW) per la realizzazione di un impianto eolico decresce in prima approssimazione all’aumentare della taglia delle macchine e della potenza complessiva dell’impianto (rif. “Le vie del vento” di Pirazzi-Gargini, ANEV); ne derivano tempi di ammortamento inferiori.

Da quanto sopra evidenziato gli aerogeneratori di grossa taglia sono in generale da preferire a quelli di taglia minore in quanto, a parità di produzione energetica, richiedono una minore occupazione di suolo, hanno ingombri minori sul territorio (area sul piano verticale occupata nel proprio funzionamento dall’insieme degli aerogeneratori), presentano minore impatto visivo e richiedono investimenti specifici inferiori; a titolo esemplificativo l’estensione complessiva di un parco tra i 400 e 500 MW è pari a circa 50÷60 km se si utilizzano macchine da 3 MW, mentre è di 110÷130 km nell’ipotesi di fare ricorso a macchine da 800 kW (prevalentemente utilizzate ad oggi in ambito ligure). Un’estensione di 50÷60 km, che in prima istanza può apparire gravosa dal punto di vista paesaggistico soprattutto se si tratta di crinali caratterizzati da maggiore ventosità per noti effetti fluidodinamici, assume un peso meno rilevante se gli impianti vengono inseriti in contesti già significativamente modificati dall’uomo.
Il trend tecnologico verso turbine sempre più grandi verificatosi negli ultimi 40 anni (Figura 28) è destinato a continuare anche nei prossimi anni, per cui si potrà assistere ad un incremento nella taglia delle macchine installate e nella potenza complessiva del singolo impianto. Un fattore limitante a tal riguardo si individua nella complessità del territorio regionale che rende spesso difficoltoso il trasporto di componenti con grandi dimensioni in siti che sono spesso disposti lungo i crinali montuosi lontani da strade di adeguate dimensioni.

Con riferimento a quanto evidenziato nei punti precedenti, l’Atlante Eolico del CESI\(^45\) evidenzia come l’immediato entroterra dei maggiori centri abitati della regione (La Spezia, l’area tra Chiavari e Sestri Levante, il levante di Genova, Imperia, San Remo) sia caratterizzato da buona producibilità (1500÷2000 ore equivalenti all’anno), risultando allo stesso tempo fortemente infrastrutturati (edifici, autostrade, linee ferroviarie, porti): l’inserimento di impianti eolici in tali contesti comporterebbe modifiche marginali all’habitat e alla vocazione di questi territori già oggetto di significative modificazioni antropiche.

Una strategia regionale volta a favorire la realizzazione di impianti eolici nelle vicinanze di centri abitati ridurrebbe l’impatto paesaggistico, che costituisce il principale fattore di opposizione da parte delle popolazioni locali, e risulterebbe efficace anche dal punto di vista energetico e delle reti di trasporto in quanto limiterebbe le distanze tra produzione ed utenza con conseguente riduzione delle perdite di rete e minori carichi del sistema di trasporto dell’energia. Tutto ciò, comunque, nel rispetto delle disposizioni sulle distanze dalle abitazioni e dai centri abitati contenute nel comma 8 dell’articolo 18 della legge regionale 28 giugno 2017, n. 15 (Adeguamento della legislazione regionale in materia di attività edilizia alla disciplina statale dei titoli abilitativi edilizi) e riportate nell’allegato 2 del presente piano (riferimento A61 e A62).

Per quanto riguarda le potenzialità di innovazione tecnologica del settore, la ricerca si muove lungo diverse linee di azione:

- riduzione dei pesi favorita dall’incremento della taglia delle macchine: il peso dei componenti è rilevante ai fini dei costi di costruzione e montaggio, nonché della manutenzione, visto che le macchine di grosse dimensioni vengono spesso installate in siti remoti oppure offshore;
- ottimizzazione delle tecnologie esistenti, in particolare rivolte all’eliminazione di componenti meccanici, quale il moltiplicatore di giri. Già attualmente alcuni costruttori realizzano generatori elettrici “multipolari” specifici per aerogeneratori, con velocità di rotazione compatibili con quelle del rotore;

\(^{45}\) Centro Elettrotecnico Sperimentale Italiano
l’incremento del numero dei poli comporta però un incremento dei pesi, annullando in parte i vantaggi derivanti dall’eliminazione del moltiplicatore di giri. Al fine di risolvere questo ulteriore problema sono allo studio generatori leggeri e compatti che impiegano elettromagneti con avvolgimenti in materiale superconduttore ad alta temperatura (HTS), più leggeri (circa 1/3 di peso in meno) e con perdite elettriche ridotte (circa la metà).

- tecnologie sperimentali per lo sfruttamento del vento, tra cui sistemi di sfruttamento delle correnti d’alta quota mediante turbine ad aquilone.

Lo sviluppo di tecnologie sperimentali per lo sfruttamento del vento richiede grossi investimenti che generalmente derivano da cofinanziamenti pubblici o da attività di ricerca di grosse aziende multinazionali. L’attuale situazione economica nazionale e quindi regionale e la mancanza di aziende di dimensioni tali da disporre dei capitali adeguati per la ricerca avanzata, rendono poco percorribile tale linea di azione in ambito regionale.

Per contro la presenza storica in Liguria di un’industria elettromeccanica importante nonché di nuovi settori produttivi nel campo dell’alta tecnologia, tra cui quello della superconduzione, rendono percorribile l’adozione di politiche volte a favorire lo sviluppo di attività lungo questa linea di azione. Tali politiche potrebbero promuovere collaborazioni tra le grosse aziende produttrici di aerogeneratori ed aziende liguri specializzate nel settore elettromeccanico e dei superconduttori, al fine di sviluppare generatori elettrici ad elevate prestazioni, specifici per aerogeneratori, soprattutto in considerazione del forte sviluppo previsto a livello mondiale proprio delle macchine di grossa taglia.

Un ulteriore settore in cui l’industria ligure potrebbe sviluppare specifiche attività è dato dall’eolico off-shore, che rappresenta una delle frontiere più interessanti del settore. Se in Italia permangono difficoltà legate agli aspetti autorizzativi per questo tipo di impianti, in Europa sono installati complessivamente 3,8 GW al 2011, con un tasso di crescita annuo del 41%. Nel corso dell’ultimo anno sono stati installati nei mari dell’Europa 9 impianti per 235 turbine, con una potenza complessiva pari a 866 MW. La realizzazione di questi impianti ha richiesto investimenti per oltre 2 mld € (il 25% del totale investito in Europa nel settore eolico nel suo complesso). Regno Unito e Germania stanno guidando la corsa per le nuove installazioni, avendo attivato già oggi nuovi progetti che dovrebbero portare a 2,3 i GW installati nei due Paesi entro i prossimi 5 anni. L’interesse per le installazioni off-shore si basa sul fatto che:

- possono sfruttare maggiormente, per l’assenza di ostacoli (edifici o alture), le correnti aeree, che peraltro si manifestano con maggiore intensità sul mare;
- non hanno, purché opportunamente distanziate dalla costa, un impatto negativo sul paesaggio e certamente non interferiscono con le attività umane.

![Figura 29 - Proiezione fino al 2030 mercato eolico Europeo per onshore / offshore. Fonte: WWA-2010.](image-url)
Gli ultimi sviluppi nell’eolico offshore mirano a sviluppare l’eolico montato su strutture galleggianti, in modo da superare l’attuale vincolo di poter montare le turbine solamente in acque basse (con fondali inferiori ai 35-40 metri), allargando il campo di applicabilità ai mari profondi come il Mediterraneo, il mare di Giappone, le Canarie, le Hawaii e le molte isole del Pacifico. Tali applicazioni potrebbero consentire la realizzazione di parchi eolici di dimensioni rilevanti a distanze significative dalla costa e tali da non causarne alterazioni dal punto di vista paesaggistico.

L’industria ligure delle costruzioni marine è ancora una delle più consolidate a livello mondiale e potrebbe sviluppare specifiche attività per quanto riguarda i componenti “a mare” dell’eolico offshore, ossia le parti di sostegno ed ancoraggio al fondale marino dell’aerogeneratore. Gli alti costi di realizzazione degli impianti off-shore di profondità richiede elevati livelli di produzione difficilmente ottenibili nei mari liguri, caratterizzati da una ventosità medio bassa (1500-2500 ore equivalenti all’anno); tuttavia il mercato europeo e mondiale in forte crescita potrebbe essere in parte soddisfatto attraverso tecnologie sviluppate sul territorio ligure, anche con il supporto di specifiche strutture di ricerca.

La Regione Liguria, attraverso il presente Piano, assume come target regionale per il 2020 l’installazione di una potenza eolica pari a 250 MW.

Azioni per lo sviluppo delle fonti rinnovabili elettriche: eolico
La DCR n. 3 del 3/02/2009 approvava la mappatura delle Aree Non Idonee alla collocazione di impianti eolici di tipo industriale tenendo conto delle “emergenze paesistiche, architettoniche e storiche ed aree di particolare tutela ai fini paesistici (CE del PTCP), nonché emergenze puntuali ed areali, oltre che delle aree di presenza di avifauna e chiotterofauna tutelata a livello europeo, nazionale e regionale, con riferimento ad aree parco, SIC, ZPS, rotte migratorie riconosciute e connessioni ecologiche della Rete Natura 2000, funzionali alla conservazione diretta e/o indiretta (tramite la tutela dell’habitat) delle stesse specie”.

La stessa Deliberazione stabiliva peraltro che “la cartografia delle aree non idonee alla collocazione di impianti eolici è uno strumento dinamico, aggiornabile mediante acquisizione dei dati di osservazione convalidati dall’Osservatorio regionale della biodiversità, nonché degli esiti dei monitoraggi di avifauna e chiotterofauna a vario scopo realizzati. Tale cartografia è messa a disposizione via web e formalmente aggiornata ogni due anni sulla base delle informazioni acquisite”.

La Regione Liguria, al fine di ridefinire la mappatura delle Aree Non Idonee per la collocazione degli impianti eolici di tipo industriale, ha avviato uno specifico Tavolo Tecnico con il coinvolgimento dei soggetti competenti in materia ambientale, al fine di pervenire a criteri condivisi per la revisione della suddetta cartografia.
La ridefinizione delle Aree Non Idonee, congiuntamente alle Linee Guida regionali costituiranno pertanto un quadro completo a supporto della programmazione degli interventi e del loro corretto inserimento paesaggistico ed ambientale da parte degli investitori.

Va sottolineato come l’azione di Regione Liguria a sostegno della diffusione della fonte eolica possa concretizzarsi attraverso iniziative di forte semplificazione amministrativa e procedurale, volte anche ad una riduzione dei tempi per la concessione delle autorizzazioni.
Parallelamente la Regione Liguria mette a disposizione delle imprese agricole risorse a valere sulla programmazione PSR 2014-2020 che possono concorrere a favorire l’installazione di impianti eolici di piccola taglia (Tabella 58 e Tabella 59).

<table>
<thead>
<tr>
<th>PSR 2014-2020</th>
<th>Sottomisure</th>
</tr>
</thead>
<tbody>
<tr>
<td>M04 Investimenti in immobilizzazioni materiali (Art. 17)</td>
<td>04.01 supporto agli investimenti nelle aziende agricole</td>
</tr>
<tr>
<td></td>
<td>04.02 supporto agli investimenti nella trasformazione, commercializzazione e sviluppo dei prodotti agricoli</td>
</tr>
</tbody>
</table>

46 DM 10/9/2010 recante “Linee guida per l’autorizzazione degli impianti alimentati da fonti rinnovabili”
PSR 2014-2020

MISURA M04 - Investimenti in immobilizzazioni materiali (Art. 17)

La misura persegue principalmente l’obiettivo di stimolare la competitività del settore agricolo e forestale. Essa nel suo complesso ha anche un effetto indiretto sulla realizzazione di uno sviluppo territoriale equilibrato delle economie e comunità rurali, compresi la creazione e il mantenimento di posti di lavoro. La misura concorre ai seguenti obiettivi trasversali:

- **Innovazione:** Gli interventi previsti concorrono a migliorare l’efficienza e la competitività delle filiere produttive e la qualità dei prodotti agroalimentari.
- **Ambiente:** Gli investimenti produttivi di cui alle sottomisure 04.01, 04.02 e 04.03 sostengono anche il miglioramento delle prestazioni ambientali delle aziende attraverso risparmio idrico, efficienza energetica, riduzione di emissioni inquinanti, difesa del suolo dall’erosione e riutilizzo di scarti e sottoproducti.

SOTTOMISURA M4.01 SUPPORTO AGLI INVESTIMENTI NELLE AZIENDE AGRICOLE

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il tipo di operazione persegue l’obiettivo di:</td>
<td>Sono beneficiari del sostegno dell’operazione le imprese agricole singole e associate.</td>
</tr>
<tr>
<td>• migliorare l’efficienza economica aziendale;</td>
<td></td>
</tr>
<tr>
<td>• accrescere il valore aggiunto aziendale tramite la trasformazione in azienda e la vendita diretta in azienda dei prodotti aziendali;</td>
<td></td>
</tr>
<tr>
<td>• migliorare le prestazioni ambientali aziendali con particolare riferimento a risparmio idrico, energetico, riduzione delle emissioni inquinanti, difesa del suolo dall’erosione;</td>
<td></td>
</tr>
<tr>
<td>• miglioramento delle condizioni di sicurezza del lavoro.</td>
<td></td>
</tr>
<tr>
<td>Sono ammissibili le spese relative ad investimenti finalizzati alla produzione di energia elettrica o termica da destinarsi esclusivamente all’utilizzo aziendale, attraverso lo sfruttamento di fonti energetiche rinnovabili (solare, eolico) e/o di biomasse solo derivanti da sottoproducti e/o residui, di origine prevalentemente aziendale, derivanti dalla lavorazione di prodotti agricoli e forestali.</td>
<td></td>
</tr>
<tr>
<td>I suddetti impianti devono essere commisurati alle esigenze energetiche, su base annuale, relative ai cicli produttivi agricoli dell’azienda agricola interessata. È escluso qualsiasi sostegno alla produzione di biocombustibili derivanti da produzione agricola dedicata.</td>
<td></td>
</tr>
<tr>
<td>La produzione di energia è limitata ai combustibili derivanti da scarti aziendali o di origine locale, al fine di minimizzare le necessità di trasporto, e derivanti altresì da una gestione attiva delle foreste, in modo da favorire l’avvio di filiere corte. Gli impianti funzionanti a biomasse dovranno sfruttare scarti di produzione agricola, agro-industriale o forestale locale, minimizzando le necessità di trasporto. Con il termine “locale” si intende una distanza di non più di 70 km tra il luogo di produzione e il luogo di utilizzo;</td>
<td></td>
</tr>
<tr>
<td>Gli investimenti in impianti per la produzione di energia, il cui principale obiettivo è la produzione di energia elettrica dalle biomasse sono ammissibili al sostegno solo se è utilizzata una percentuale di energia termica pari almeno al 40%, ai sensi dell’articolo 13 del regolamento di esecuzione (UE) n. 807/2014 della Commissione.</td>
<td></td>
</tr>
</tbody>
</table>

SOTTOMISURA M04.02 SUPPORTO AGLI INVESTIMENTI NELLA TRASFORMAZIONE, COMMERCIALIZZAZIONE E SVILUPPO DEI PRODOTTI AGRICOLI

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il tipo di operazione persegue l’obiettivo di:</td>
<td>Sono beneficiarie del sostegno dell’operazione le imprese che trasformano e commercializzano i prodotti agricoli di cui</td>
</tr>
<tr>
<td>• migliorare l’efficienza della filiera, con particolare riferimento alla creazione o consolidamento di sbocchi di mercato stabili e duraturi per i produttori del prodotto di base;</td>
<td></td>
</tr>
<tr>
<td>• migliorare l’efficienza economica aziendale;</td>
<td></td>
</tr>
<tr>
<td>• migliorare le prestazioni ambientali aziendali con particolare riferimento a risparmio idrico, energetico, riduzione delle emissioni inquinanti, riutilizzo degli scarti e dei</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 58 - Elementi del PSR 2014-2020 correlati all’installazione di impianti eolici
sottoprodotti;

- migliorare le condizioni di sicurezza del lavoro;
- favorire l’adesione a sistemi di qualità certificata in base a norme europee, nazionali e regionali di cui alla misura 3.1.

Sono ammissibili gli investimenti finalizzati alla produzione di energia elettrica o termica da destinarsi esclusivamente all’utilizzo aziendale, attraverso lo sfruttamento di fonti energetiche rinnovabili: solare, eolico o di biomasse solo derivanti da sottoprodotti derivanti dalla trasformazione, prevalentemente aziendale, di prodotti agricoli o forestale.

Gli impianti devono essere commisurati alla dimensione dell’azienda e alle esigenze energetiche relative ai cicli produttivi su base annuale. E’ escluso qualsiasi sostegno per impianti che utilizzino biocombustibili derivanti da produzione agricola dedicata. Limitatamente agli investimenti il cui principale obiettivo è la produzione di energia elettrica, questi sono ammissibili al sostegno solo se è utilizzata una percentuale di energia termica pari almeno al 40%, ai sensi dell’articolo 13 del regolamento di esecuzione (UE) n. 807/2014 della Commissione.

Tabella 59- Dettaglio del tipo di investimento e dei beneficiari relativi agli elementi del PSR 2014-2020 correlati all’installazione di impianti eolici

La Regione Liguria intende infine favorire, attraverso progetti finanziati dalla Commissione Europea, attività di approfondimento sulla fattibilità tecnico-economiche dell’eolico off-shore.

Per quanto riguarda gli aspetti ambientali legati dell’installazione di tecnologie eoliche si rimanda alla relativa scheda dell’Allegato 2 al presente documento.

6.3.1.3. L’idroelettrico

Al fine di definire gli obiettivi regionali per il settore idroelettrico occorre affrontare una breve analisi dello stato dell’arte degli studi del potenziale di questa fonte e dei fattori di influenza che ne condizionano lo sviluppo.

La producibilità idroelettrica in Italia al 2020 stimata mediante tale metodologia è pari a 42 TWh. Tra i fattori di influenza principali che agiscono, in senso opposto, sullo sviluppo della fonte idroelettrica vi sono:

- l’impatto dei cambiamenti climatici sulle precipitazioni e dei vincoli ambientali (uso plurimo delle acque e Deflusso Minimo Vitale - DMV), che comportano una riduzione della producibilità;
- il ripotenziamento del parco esistente, per il quale non è prevedibile l’installazione di nuovi impianti di grossa taglia, essendo i siti adatti quasi totalmente sfruttati, e l’installazione di nuovi impianti di taglia inferiore ai 10 MW (mini-idroelettrico), che andranno invece nella direzione di un aumento della produzione.

La distribuzione regionale della produzione degli impianti esistenti è stata mantenuta pari a quella attuale, ipotizzando che i sopra citati fattori che la influenzaranno agiranno allo stesso modo su tutte le Regioni interessate. La distribuzione regionale dei nuovi impianti di taglia inferiore a 10 MW è stata invece assegnata proporzionalmente alle potenzialità non già sfruttate, determinate in funzione della disponibilità della risorsa idrica (da cui derivano le informazioni di portata dei corsi d’acqua), basata su dati storici di precipitazione, e della conformazione geo-morfologica dei bacini (da cui i salti geodetici).
Si è valutato inoltre l’effetto della “antropizzazione” sulla potenzialità teorica così calcolata: l’impatto dell’uomo sulla risorsa idrica si esprime infatti in utilizzazioni di vario tipo, le quali sottraggono risorse teoricamente utilizzabili per la produzione elettrica (fonte: sito MiniHydro - minihydro.erre‐web.it).

Dalle analisi condotte risulta che il potenziale di produzione di energia da fonte idroelettrica in Liguria è pari a circa 342 GWh (si veda Tabella 60).

<table>
<thead>
<tr>
<th>Regioni</th>
<th>Nuovo mini-idro (GWh)</th>
<th>Idroelettrico esistente (GWh)</th>
<th>Produzione totale (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abruzzo</td>
<td>158</td>
<td>1.399</td>
<td>1.558</td>
</tr>
<tr>
<td>Basilicata</td>
<td>150</td>
<td>213</td>
<td>363</td>
</tr>
<tr>
<td>Calabria</td>
<td>454</td>
<td>801</td>
<td>1.255</td>
</tr>
<tr>
<td>Campania</td>
<td>271</td>
<td>553</td>
<td>824</td>
</tr>
<tr>
<td>Emilia Romagna</td>
<td>423</td>
<td>775</td>
<td>1.198</td>
</tr>
<tr>
<td>Friuli V. Giulia</td>
<td>757</td>
<td>1.187</td>
<td>1.944</td>
</tr>
<tr>
<td>Lazio</td>
<td>304</td>
<td>940</td>
<td>1.244</td>
</tr>
<tr>
<td>Liguria</td>
<td>130</td>
<td>213</td>
<td>342</td>
</tr>
<tr>
<td>Lombardia</td>
<td>756</td>
<td>7.485</td>
<td>8.241</td>
</tr>
<tr>
<td>Marche</td>
<td>173</td>
<td>444</td>
<td>617</td>
</tr>
<tr>
<td>Molise</td>
<td>84</td>
<td>167</td>
<td>251</td>
</tr>
<tr>
<td>Piemonte</td>
<td>1.060</td>
<td>5.971</td>
<td>7.031</td>
</tr>
<tr>
<td>Puglia</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Sardegna</td>
<td>184</td>
<td>391</td>
<td>575</td>
</tr>
<tr>
<td>Sicilia</td>
<td>250</td>
<td>220</td>
<td>470</td>
</tr>
<tr>
<td>Trentino Alto Adige</td>
<td>744</td>
<td>7.081</td>
<td>7.825</td>
</tr>
<tr>
<td>Toscana</td>
<td>340</td>
<td>618</td>
<td>958</td>
</tr>
<tr>
<td>Umbria</td>
<td>74</td>
<td>1.114</td>
<td>1.189</td>
</tr>
<tr>
<td>Valle D’Aosta</td>
<td>288</td>
<td>2.115</td>
<td>2.403</td>
</tr>
<tr>
<td>Veneto</td>
<td>379</td>
<td>3.313</td>
<td>3.692</td>
</tr>
<tr>
<td>Italia</td>
<td>7.000</td>
<td>35.000</td>
<td>42.000</td>
</tr>
</tbody>
</table>

Le difficoltà di sviluppo di questa fonte in regione è principalmente da ricercarsi nelle caratteristiche geomorfologiche del territorio ed in particolare nel carattere torrentizio dei corsi d’acqua, con forte
stacionalità della portata e nello sviluppo ridotto dei bacini idrografici, che rendono difficile un approccio intensivo alla risorsa 47.

Si può ipotizzare pertanto che nei prossimi anni lo sfruttamento della fonte idroelettrica (che pur rimane ancora la fonte rinnovabile elettrica più sfruttata a livello ligure grazie alla presenza di impianti dotati di serbatoi di compenso per far fronte ai periodi di magra) sarà legato alla riattivazione di centraline esistenti e alla realizzazione di impianti di piccola taglia, anche in ambito acqueidottistico. Si ipotizza pertanto un obiettivo di crescita del settore tale da portare la potenza installata dell’idroelettrico dagli 86 MW del 2012 a 110 MW, con una corrispondente produzione energetica di circa 26 ktep. L’ipotesi di una crescita del settore è comunque sostenuta dal riscontro che l’ufficio VIA regionale abbia continuato a ricevere negli ultimi anni richieste di autorizzazione per impianti mini-idroelettrici (per il dettaglio delle richieste di autorizzazione ambientale si veda Allegato A al Rapporto Ambientale Preliminare ed il sito www.ambienteinliguria.it).

Azioni per lo sviluppo delle fonti rinnovabili elettriche: idroelettrico
La Regione, al fine di sostenere lo sfruttamento dell’idroelettrico di piccola taglia in Liguria, nel pieno rispetto e compatibilità con la tutela dell’ambiente e il raggiungimento e mantenimento degli obiettivi di qualità delle acque ai sensi della direttiva 2000/60/CE, intende attivare un set di misure conoscitive volte a:

• aggiornare la banca dati delle derivazioni di GenioWeb (azione già in corso di realizzazione ma ancora non completamente finanziata), al fine di alimentare in maniera continuativa il database anche in fase di istruttoria delle pratiche consentendo l’aggiornamento dei dati anagrafici e l’inserimento delle misure da parte degli istanti e la realizzazione di un repertorio pratiche dematerializzato;

• dotare la regione di un modello di bilancio idrico, in linea alle indicazioni delle Autorità di Distretto del Fiume Po e dell’Appennino Settentrionale, al fine di quantificare meglio la disponibilità di risorsa idrica per tutti gli usi ed identificare, nell’ambito del Piano Energetico Ambientale Regionale, le aree con potenziale residuo a favore degli investitori privati ai fini della redazione dei progetti;

• identificare, nell’ambito del Piano Energetico Ambientale Regionale, i tratti di reticolo idrografico aventi area drenata superiore a 3 km², georeferenziare gli impianti idroelettrici esistenti e dismessi, nonché le briglie esistenti, provvedendo a diffondere queste informazioni, anche a favore di potenziali investitori;

• definire i criteri per la mappatura dei tratti fluviali non idonei all’idroelettrico; a tal fine la Regione Liguria ha avviato uno specifico Tavolo Tecnico, che prevede il coinvolgimento dei soggetti con competenze trasversali in materia (risorse idriche, biodiversità, assetto del territorio...);

• definire i parametri sintetici di valutazione della qualità ambientale ed idromorfologica applicabili estensivamente a tutti i corpi idrici della regione sulla base delle indicazioni di livello nazionale ed in particolare dal Manuale Ispra sul “Sistema di valutazione idromorfologica, analisi e monitoraggio dei corsi d’acqua (IDRAIM)” e dai Decreto Direttoriali del MATTM n. 29/STA e 30/STA del 13 febbraio 2017.

Per quanto riguarda gli aspetti ambientali legati all’installazione di impianti idroelettrici si rimanda alla relativa scheda dell’Allegato 2 al presente documento.

6.3.1.4. Il biogas

In base ai dati disponibili del Rapporto Statistico 2012 del GSE, la potenza complessiva degli impianti a biogas installati in regione è pari a circa 21 MW corrispondenti a circa 11 ktep/anno.

Con il termine biogas si intende una miscela di vari tipi di gas (per la maggior parte, 50-80%, metano) prodotto della fermentazione batterica in anaerobiosi (assenza di ossigeno) dei residui organici provenienti

47 Fonte: Potenziale delle fonti rinnovabili in Liguria, CESEN. PEAR 2003
da rifiuti, residui vegetali ed animali in decomposizione, liquami zootecnici o fanghi di depurazione, scarti dell’agro-industria. L’intero processo vede la decomposizione del materiale organico da parte di alcuni tipi di batteri, producendo anidride carbonica, idrogeno molecolare e metano (metanizzazione dei composti organici).

Figura 31 – Impianti biogas presenti delle regioni italiane.
Fonte: “Digestione anaerobica da rifiuti” Dipartimento Energetica Università di Firenze.

Il D Lgs n. 28/2011 di attuazione della Direttiva Europea 2009/28/CE sulla promozione dell’uso dell’energia da fonti rinnovabili può essere applicato a tre tipologie di impianti a biogas a seconda della matrice organica da cui è prodotto, e per l’esattezza:

- gas di discarica, prodotto dalla frazione organica dei rifiuti urbani;
- gas residuati dai processi di depurazione, ottenuto dai fanghi di depurazione;
- biogas prodotto da deiezioni animali, scarti di macellazione, scarti organici agro-industriali, residui colturali e colture energetiche.

Il biogas ha un discreto potere calorifico (mediamente circa 4500 kcal/Nm³) dato dal contenuto in metano, per cui si presta ad una valorizzazione energetica per combustione diretta o in modalità di cogenerazione di elettricità e calore.

L’uso ai fini energetici di questo combustibile è particolarmente rilevante con riferimento alla riduzione delle emissioni di gas climalteranti, in quanto consente di evitare il rilascio in atmosfera del metano, generato dalla fermentazione dei residui organici in discarica, il cui potere climalterante (GWP100 = Global Warming Potential a 100 anni) è prossimo a 25 volte quello della CO₂. Pertanto lo sfruttamento di questo combustibile a fini energetici ha il duplice vantaggio di sostituire una fonte fossile con una fonte rinnovabile e di impedire che il metano incombusto si liberi in atmosfera.

Nel caso di impianti alimentati da biogas prodotto nelle discariche controllate di rifiuti urbani, le parti principali dell’impianto sono le seguenti:

- sezione di estrazione del biogas da discarica (pozzi di captazione, linee di trasporto, collettori di raggruppamento);
- sezione di aspirazione e condizionamento del biogas da discarica (collettore generale, separatori di condensa, filtri, aspiratori);
- sezione di produzione dell’energia elettrica (gruppi elettrogeni) e torcia (dispositivo di sicurezza per bruciare l’eventuale biogas non combusto nella sezione di produzione energetica).
Il biogas di provenienza da rifiuti di discarica viene prodotto in condizioni anaerobiche, generando un gas con discreto potere calorifico, composto tipicamente da 55% di metano e 45% di anidride carbonica, con tracce di composti organici volatili.

![Diagramma di un impianto biogas da discarica - schema di principio.](image)

Fonte: GSE.

Il più importante impianto di raccolta ed utilizzo di biogas da discarica in Liguria è situato presso la discarica di Monte Scarpino e raccoglie circa il 60% dei rifiuti non pericolosi prodotti in Provincia di Genova, con un bacino di utenza di circa 900.000 abitanti. Dalla città di Genova vengono conferite in discarica circa 280.000 tonnellate l’anno.

A partire dal 2006, il biogas prodotto nella discarica viene estratto tramite 120 pozzi per essere utilizzato attraverso gruppi elettrogeni per la produzione di energia elettrica. La portata media di biogas estratto è di circa 1.300 Nm³/h e rappresenta il 60% della produzione totale stimata della discarica (il restante 40% viene disperso in atmosfera).

Negli anni passati in media sono stati prodotti circa 54.000 MWh di energia elettrica all’anno, immessa nella rete nazionale. Dopo l’ultimo recente ampliamento dell’impianto (2011), con l’aggiunta di un settimo motore da 1,4 MW, la produzione da biogas dell’impianto di Monte Scarpino raggiunge i 66.000 MWh l’anno (= 5,7 ktep), che rappresentano circa la metà dell’energia elettrica da biogas prodotta in tutta la regione.

Nel caso dei biogas da acque reflue, lo schema impiantistico prevede, al posto della sezione di estrazione, una sezione di produzione (digestore) e raccolta (gasometro) del biogas, poi inviato ai gruppi elettrogeni per produrre energia elettrica. In particolare la produzione di biogas si ottiene attraverso l’installazione di biodigestori di fanghi provenienti dal processo di depurazione delle acque reflue urbane. In Liguria lo sfruttamento delle acque reflue ai fini della produzione energetica è modesto: a titolo esemplificativo, dei nove depuratori che costituiscono la rete di impianti che tratta le acque reflue del comune di Genova, quattro realizzano processi di trattamento anaerobico dei fanghi da cui si ottiene biogas; sono i depuratori di Voltri, Volpara, Valpolcevera e Darsena.

Per quanto riguarda la produzione di biogas da colture energetiche dedicate, l’orografia complessa del territorio regionale con una scarsità di ampi spazi pianeggianti facilmente lavorabili da destinare a coltivazioni di questo tipo, caratterizzate da basso valore aggiunto, rende tale opzione limitata.

Pertanto la generazione elettrica da biogas è principalmente legata alla produzione da acqua reflue e dalla decomposizione dei rifiuti.

Fonte: dato AMIU del 2011.
Un interessante ambito che sta dimostrando grosse potenzialità di sfruttamento a livello europeo riguarda la digestione anaeroba della frazione umida dei rifiuti urbani ed assimilati ottenuti da raccolta differenziata.

Attualmente in Liguria, a valle del trattamento dei Rifiuti Urbani Indifferenziati (RUI), con l’eccezione della quota trattata in impianti fuori Regione a causa della perdurante situazione di emergenza riguardante il territorio genovese, determinata dalla necessità di adeguamento dell’impianto di Scarpino (Genova) alle disposizioni che impongono l’obbligo del pretrattamento tramite separazione e stabilizzazione della frazione umida, come chiarito dalla Circolare Ministeriale dell’Agosto 2013, il sottovaglio prevalentemente organico viene sottoposto al processo di biostabilizzazione, prima dell’abbancamento in discarica o eventuale auspicabile recupero come copertura giornaliera o finale o per ripristini ambientali.

Per quanto riguarda il trattamento della Frazione Organica (FORSU) a valle della raccolta differenziata (RD) dei Rifiuti Solidi Urbani (RSU) solo una quota molto limitata della frazione raccolta viene trattata in piccoli impianti rigidi di compostaggio anaerobico, mentre quota largamente prevalente viene inviata ad oggi ancora fuori regione.

Fino a qualche anno fa gli ambiti urbani in cui la differenziazione dell’umido veniva praticata erano ancora pochi cosicché i quantitativi di materiale erano limitati e tali da non giustificare o stimolare la promozione e realizzazione di filiere regionali.

Con il Piano regionale di gestione dei rifiuti e delle bonifiche (PGR), definitivamente approvato con la Deliberazione del Consiglio Regionale del 25 marzo 2015, n. 14, Regione Liguria ha definito gli indirizzi, le strategie e le politiche gestionali che intende sviluppare, indicando le modalità per una evoluzione complessiva del sistema ligure verso ed oltre gli obiettivi previsti a livello comunitario e nazionale, tra i quali ovviamente quello di raggiungere elevati livelli di raccolta differenziata e recupero, in primis dell’organico.

Dal punto di vista impiantistico, coerentemente agli indirizzi europei, il piano regionale pone particolare attenzione alla frazione umida, per cui viene promosso principalmente l’utilizzo di processi flessibili di digestione anaerobica.

Questi impianti richiedono infatti investimenti decisamente superiori (400÷800 €/anno) rispetto ai semplici impianti di compostaggio (300÷500 €/anno). Pertanto la produzione di biogas dalla frazione umida degli RSU raccolti in modo differenziato richiede che questa prassi, attualmente circoscritta a poche aree urbane, si diffonda al punto da garantire quantitativi di umido sufficienti a giustificare l’investimento in impianti di digestione anaerobica. La seguente tabella riporta i dati al 2012.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[kg/abitante]</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperia</td>
<td>214.000</td>
<td>136.148</td>
<td>636</td>
<td>36.554</td>
<td>26,8</td>
</tr>
<tr>
<td>Savona</td>
<td>281.000</td>
<td>186.194</td>
<td>663</td>
<td>62.262</td>
<td>33,4</td>
</tr>
<tr>
<td>Genova</td>
<td>868.000</td>
<td>489.042</td>
<td>563</td>
<td>163.032</td>
<td>33,3</td>
</tr>
<tr>
<td>La Spezia</td>
<td>219.000</td>
<td>125.372</td>
<td>572</td>
<td>38.087</td>
<td>30,4</td>
</tr>
<tr>
<td>Liguria</td>
<td>1.582.000</td>
<td>936.756</td>
<td>592</td>
<td>299.935</td>
<td>32,0</td>
</tr>
</tbody>
</table>

Fonte: Piano Regionale di Gestione dei Rifiuti (PRGR) della Liguria.

In questo modo, col prevedibile diffondersi della raccolta differenziata diventerebbe economicamente sostenibile realizzare impianti di trattamenti che (vedi schema in Figura 33) prevedano una prima fase di digestione anaerobica del rifiuto con recupero di biogas e la successiva stabilizzazione aerobica con produzione di compost adatto all’uso agricolo dal materiale residuo. Un simile processo consentirebbe non solo una maggiore valorizzazione del rifiuto grazie alla produzione di biogas in quantità all’incirca pari a 100÷150 m3/t di rifiuto lavorato (con 60% in contenuto di metano), ma ridurrebbe la quantità di materiale
da “compostare” riducendo di pari passo il rischio di dover conferire in discarica compost di qualità per mancanza di domanda.

![Diagram](attachment:diagram.png)

Figura 33 – Processo di trattamento della frazione organica (FORSU) con produzione biogas

Il tema degli sviluppi dello sfruttamento dell’energia da biogas sul territorio regionale viene trattato nel presente Piano in relazione a quanto previsto dal Piano Regionale di Gestione dei Rifiuti e delle bonifiche (PGR).

Azioni per lo sviluppo delle fonti rinnovabili elettriche: biogas

La Regione, al fine di favorire lo sfruttamento del potenziale energetico da biogas, attiverà **misure specifiche in attuazione del Piano Regionale di Gestione dei Rifiuti**, tenendo conto dei criteri escludenti, penalizzanti e preferenziali identificati nel PGR per gli impianti di trattamento a tecnologia complessa di rifiuti urbani\(^49\) e di quanto previsto dai Piani d’Area Metropolitana e Provinciale in corso di adozione. Secondo gli indirizzi europei relativi alla cosiddetta “gerarchia dei rifiuti” il PRGR stabilisce le seguenti priorità di intervento ed azioni da perseguire entro il 2020:

- la riduzione della quantità e della pericolosità dei rifiuti prodotti;
- un target minimo di riferimento per la preparazione per il riutilizzo e il riciclaggio;
- l’incremento della qualità e della quantità della raccolta differenziata;
- la completa separazione e valorizzazione della frazione umida;
- il recupero prioritario di materia o in alternativa al suo recupero, la sua valorizzazione energetica;
- l’autosufficienza per lo smaltimento nell’ambito regionale, mediante la costruzione di nuovi impianti e/o l’utilizzo ottimale degli impianti esistenti.

Una delle principali carenze del sistema gestionale in Liguria risiede nella carenza di impianti di trattamento per il recupero della frazione organica. Pertanto gli scenari impiantistici individuati dal PRGR fanno riferimento alla necessità di dotare la Liguria delle infrastrutture necessarie al trattamento, a fini di recupero di materia ed energetico, della frazione organica raccolta separatamente, nonché della componente ottenuta dalla selezione del rifiuto residuo.

\(^{49}\) trattamento meccanico/biologico, produzione Cdr/Css, compostaggio, digestione anaerobica, impianti di incenerimento
Tuttavia, con riferimento alla frazione organica destinata al processo di produzione di ammendante – compost, occorre considerare che, a differenza delle altre frazioni recuperabili, per le quali esiste una prospettiva di collocazione sul mercato rafforzata dal sistema convenzionale CONAI-Anci, nel caso della frazione organica al momento non è realistico ipotizzare un sistema di raccolta che alimenti una filiera produttiva esterna.

Per questo motivo il ciclo di gestione dell’organico evidenzia la necessità di uno stretto legame funzionale tra la raccolta sul territorio e la presenza di impianti per il trattamento della frazione organica, che costituisce elemento indispensabile per assicurare la praticabilità e la sostenibilità economica dell’operazione.

![Andamento % raccolta differenziata in Liguria](image)

Figura 34 – Andamento [%] della raccolta differenziata provinciale, Liguria.

Fonte: Piano Regionale di Gestione dei Rifiuti della Liguria.

In particolare nell’ultimo biennio si evidenzia finalmente una decisa crescita della raccolta differenziata, dovuta in buona parte al forte impulso dato dalla Regione, con finanziamenti ma anche con una legge (LR 20/2015) che aggiunge all'obiettivo (minimo) del 65% di differenziata ambiziosi obiettivi di riciclaggio (Indice di recupero dei materiali fissato al 45% per il 2016 – 40% per Genova), il cui mancato raggiungimento comporta l’applicazione del costo aggiuntivo di 25 euro per ogni tonnellata eccedente il limite conferito in discarica. Si è comunque ancora lontani dai valori previsti dalle direttive Europee e dalle norme nazionali (RD 65%), che il PGR prevede di raggiungere entro il 2020.

Per quanto riguarda le stime di frazione organica raccolta in modo differenziata, la seguente tabella riporta i dati riscontrati per gli anni 2012 e 2015 e le stime dei fabbisogni al 2020 (65% di raccolta differenziata), sulla base delle ultime analisi dei dati di produzione e della composizione merceologica del rifiuto residuo.

<table>
<thead>
<tr>
<th>ANNO</th>
<th>TOTALE PRODOTTO (t/anno)</th>
<th>RD %</th>
<th>RD (t/anno)</th>
<th>RIND (t/anno)</th>
<th>RO da RD (t/anno)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPERIA</td>
<td>OBTV 2020</td>
<td>120.287</td>
<td>65</td>
<td>78.186</td>
<td>42.100</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>129.985</td>
<td>35,02</td>
<td>45.521</td>
<td>84.464</td>
</tr>
<tr>
<td>SAVONA</td>
<td>OBTV 2020</td>
<td>164.502</td>
<td>65</td>
<td>106.927</td>
<td>57.576</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>173.792</td>
<td>42,05</td>
<td>73.080</td>
<td>100.713</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>186.194</td>
<td>33,44</td>
<td>62.262</td>
<td>123.932</td>
</tr>
</tbody>
</table>
Dalla Tabella 62 emerge ulteriormente l’urgente necessità di impianti per il trattamento dell’organico, a cui raccolta sul territorio regionale potrebbe e dovrebbe raddoppiare nel breve periodo.

Si può rilevare come la previsione relativa a circa 190.000 tonnellate/anno di frazione organica raccolta in modo differenziato si ponga a metà del range di fabbisogno teorico individuato per la Regione Liguria dal D.P.C.M 7 marzo 2016 (174.159 – 205.824), sulla base del range di intercettazione definito (110-130 kg/ab anno).

Il Piano regionale individua i seguenti scenari, a livello provinciale, relativamente al trattamento frazione organica da raccolta differenziata, indicando quale opzione strategica la digestione anaerobica con produzione di biogas prioritariamente da immettere in rete o utilizzare per autotrazione o, in subordine, per produzione di energia elettrica.

Provincia di Imperia

Da 20 a 46 Impianti di compostaggio di prossimità per i comuni dell’entroterra con bassa produttività.

n. 1 impianto di digestione anaerobica (rifiuto organico pari a 25.800 t/anno) per comuni vicinali alle aree con alta produttività sopra i 50 t/Km² anno o, in alternativa, se opportunamente valutato sulla sostenibilità su scala industriale, possibile solo in presenza di altre fonti di frazioni organiche umide provenienti da altre sorgenti quali fanghi attivi o da rifiuti agricoli;

n. 2 impianti di digestione anaerobica, di cui:

- su area Sanremese (per 17.000 tonnellate/anno circa)
- su area Imperiese (per 8.800 tonnellate/anno circa)

Provincia di Savona

Da 20 a 39 Impianti di compostaggio di prossimità per i comuni dell’entroterra con bassa produttività.

n. 1 impianto di digestione anaerobica (rifiuto organico pari a 34.100 t/anno) per comuni vicinali alle aree con alta produttività sopra i 50 t/Km² anno o, in alternativa, se opportunamente valutato sulla sostenibilità su scala industriale, possibile solo in presenza di altre fonti di frazioni organiche umide provenienti da altre sorgenti quali fanghi attivi o da rifiuti agricoli;

n. 2 impianti di digestione anaerobica, di cui:

- per tutti i comuni di prossimità al comune su Savona, (per 17.600 tonnellate/anno circa)
- per tutti i comuni che si affacciano su Albenga (per 16.500 tonnellate/anno circa)

Provincia di Genova

da 20 a 34 Impianti di compostaggio di prossimità per i comuni dell’entroterra con bassa produttività.

<table>
<thead>
<tr>
<th>GENOVA</th>
<th>OBTV 2020</th>
<th>432.069</th>
<th>65</th>
<th>280.845</th>
<th>151.224</th>
<th>99.376</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2015</td>
<td>454.711</td>
<td>38,65</td>
<td>175.746</td>
<td>278.965</td>
<td>36.941</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>489.042</td>
<td>33,34</td>
<td>163.032</td>
<td>326.010</td>
<td>22.824</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LA SPEZIA</th>
<th>OBTV 2020</th>
<th>110.766</th>
<th>65</th>
<th>71.998</th>
<th>38.768</th>
<th>25.476</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2015</td>
<td>122.088</td>
<td>37,55</td>
<td>45.844</td>
<td>76.244</td>
<td>14.361</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>125.372</td>
<td>30,38</td>
<td>38.087</td>
<td>87.285</td>
<td>8.703</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGIONE</th>
<th>OBTV 2020</th>
<th>827.624</th>
<th>65</th>
<th>537.956</th>
<th>289.668</th>
<th>190.354</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2015</td>
<td>880.577</td>
<td>38,63</td>
<td>340.167</td>
<td>540.410</td>
<td>83.348</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>936.755</td>
<td>32,02</td>
<td>299.934</td>
<td>636.821</td>
<td>52.922</td>
</tr>
</tbody>
</table>

n. 1 impianto di digestione anaerobica (rifiuto organico pari a 86.000 t/anno) per comuni vicinali alle aree con alta produttività sopra i 50 t/Km² anno o, in alternativa, se opportunamente valutato sulla sostenibilità su scala industriale, possibile solo in presenza di altre fonti di frazioni organiche umide proventi da altre sorgenti quali fanghi attivi o da rifiuti agricoli;
n. 2 impianti di digestione anaerobica, di cui:

- per tutti i comuni di prossimità al comune capoluogo di Genova (per 70.000 tonnellate/anno circa)
- per tutti i comuni che si affacciano sul golfo del Tigullio e sul golfo Paradiso (per 16.000 tonnellate/anno circa).

Provincia di La Spezia

Da 4 a 12 Impianti di compostaggio di prossimità per i comuni dell’entroterra con bassa produttività.
n. 1 impianto di digestione anaerobica (rifiuto organico pari a 23.000 t/anno) per comuni vicinali alle aree con alta produttività sopra i 50 t/Km² anno o, in alternativa,
n. 1 impianto di digestione anaerobica che accoglia anche i rifiuti dei comuni del Tigullio e Golfo Paradiso (rifiuto residuo pari a 19.000 t/anno da sommarsi alle 23.000 t/anno dei comuni spezzini).

Le scelte impiantistiche definitive, localizzazione compresa, sono demandate alla pianificazione di livello locale (provinciale e metropolitano).

Sulla base delle decisioni assunte nel Piano regionale - ai sensi di quanto disposto dall’art. 14, comma 2 della LR n. 1/2014 (Norme in materia di individuazione degli ambiti ottimali per l’esercizio delle funzioni relative al servizio idrico integrato e alla gestione integrata dei rifiuti) e dall’articolo 1, comma 44, lettera b), della legge 7 aprile 2014, n. 56 (Disposizioni sulle città metropolitane, sulle province, sulle unioni e fusioni di comuni) e successive modificazioni e integrazioni – Province e Città Metropolitana di Genova devono infatti provvedere alla strutturazione ed organizzazione dei servizi relativi alla raccolta e al trasporto dei rifiuti, alla raccolta differenziata e all’utilizzo delle infrastrutture al servizio della raccolta differenziata, definendo i bacini di affidamento, nonché alla gestione dei rifiuti residuali indifferenziati ed al loro smaltimento, tramite uno specifico Piano d’area provinciale o metropolitano.

Città Metropolitana di Genova e Province hanno pertanto provveduto ad elaborare i rispettivi schemi di piano d’area, ai fini dell’avvio della fase preliminare di confronto del processo di Valutazione Ambientale Strategica (“scoping” VAS), pur con qualche ritardo rispetto alla tempistica prevista dal comma 4 dell’art. 14 della citata LR 1/2014 e ss. mm. ed ii., come di seguito riassunto:

- proposta da “Piano d’Area Omogenea Imperiese per la gestione integrata del ciclo dei rifiuti”, formalizzata con Deliberazione del Consiglio Provinciale n. 40 del 13 giugno 2016 e relativo “Rapporto preliminare sul Piano d’Area Omogenea Imperiese per la gestione integrata del ciclo dei rifiuti”, formalizzato con Decreto Presidente della Provincia n. 157 del 21/12/2016 (in aggiornamento alla precedente versione formalizzata con Decreto Presidente della Provincia n. 80 del 11 maggio 2016);

- sconosciuta da “Piano d’Area omogenea della Provincia di Savona per la gestione integrata dei rifiuti urbani”,

#
con n. 1 documento di errata corrice in allegato, come formalizzato con Deliberazione del Consiglio Provinciale n. 86 del 10 novembre 2016, e relativo rapporto preliminare sul “Piano d’Area omogenea della Provincia di Savona per la gestione integrata dei rifiuti urbani”, formalizzato con Decreto Presidente della Provincia n. 146 del 21 dicembre 2016 (in aggiornamento alla precedente versione formalizzata con Decreto Presidente della Provincia n. 84 del 12 agosto 2016);

sta di “Piano d’Area per la gestione integrata del ciclo dei rifiuti della Provincia della Spezia”, con n. 1 documento di errata corrice in allegato e relativo rapporto preliminare sul “Piano d’Area per la gestione integrata del ciclo dei rifiuti della Provincia della Spezia”, formalizzati con Deliberazione del Consiglio Provinciale n. 74 del 24 novembre 2016.

Di seguito si riportano quindi le previsioni dei sopra citati schemi di piani d’area provinciale e metropolitana in merito al soddisfacimento del fabbisogno di impianti di recupero della frazione organica di rifiuti urbani.

Provincia di Imperia

Per quanto riguarda l’assetto impiantistico a regime il Piano d’area imperiese conferma l’impostazione basata sullo scenario definito nel Piano regionale di Gestione dei Rifiuti, prevedendo un impianto di trattamento meccanico biologico e un **digestore anaerobico**, **accoppati in un unico polo in località Colli, nel comune di Taggia**.

Coerentemente al PGR si prevede dunque l’utilizzo a fini energetici della frazione organica trattata tramite anaerobiosi.

Provincia di Savona

Per quanto riguarda gli impianti di recupero frazione organica da RD a regime il Piano d’Area Savonese coerentemente alle direttive del Piano regionale, prevede il conferimento presso impianti di digestione anaerobica.

Il piano d’area, posto come ad oggi nell’Area Omogenea savonese esista un solo un impianto **pubblico** di compostaggio (aerobico) industriale con una capacità massima di 4.500 ton/anno - sito nel comune di Villanova d’Albenga e a breve attivo e tenuto conto che nel 2020 la quantità potenziale di materiale compostabile risulterà pari a circa 39.000 tonnellate l’anno, ipotizza la realizzazione di un **secondo impianto d’Area (Digestore Aerobico) da ubicarsi nel sito del Boscaccio nel Comune di Vado Ligure** dove già sorgono gli altri impianti dedicati al trattamento dei rifiuti.

Deve comunque essere sottolineato che nel territorio savonese opera ora anche un impianto di digestione anaerobica privato, sito nel comune di Cairo Montenotte, potenzialmente in grado di lavorare fino 45mila tonnellate di rifiuti organici da raccolta differenziata, di cui 30mila di frazione organica e 15mila di materiale verde, per ricavare energia elettrica da biogas e compost di qualità. L’impianto ha recentemente richiesto di raddoppiare i volumi trattati, convertendosi a produzione di biogas da immettere in rete.

Tale impianto privato riceve attualmente frazione organica raccolta differenziatamente di molti comuni del savonese e di alcuni comuni del territorio genovese, rappresentando quindi un importante risposta alle necessità locali, pur non essendo integrato nella pianificazione pubblica.

Città Metropolitana di Genova

Per quanto riguarda l’assetto impiantistico a regime per l’organico da differenziata il Piano d’area metropolitana prevede:

- impianti di digestione anaerobica, di cui: n. 2
 - per tutti i comuni di prossimità al comune capoluogo (per 70.000 – 90.000 t/anno circa) n. 1
per tutti i comuni che si affacciano sul golfo del Tigullio e sul golfo Paradiso (per 16.000 – 26.000 tonnellate/anno circa) – sul quale comunque iene mantenuta ancora aperta la possibilità di limitarsi a mero compostaggio aerobico;

Nel caso di digestione anaerobica il Piano privilegia la trasformazione in biometano per l’uso per autotrazione o nelle reti domestiche, ipotesi che consente una riduzione degli impatti localizzati e dovuti alla presenza di unità di cogenerazione.

Provincia di La Spezia
L’assetto impiantistico spezzino risultava in larga parte già coerente a quanto prospettato dal Piano Regionale vigente, con la sola differenza circa il trattamento della frazione organica, per la quale si la pianificazione regionale privilegia il ricorso alla digestione anaerobica in luogo del compostaggio aerobico.

Rispondendo a tale esigenza ACAM Ambiente S.p.A., gestore degli impianti di Piano (Saliceti- Comune di Vezzano Ligure per l’indifferenziato e Boscalino – comune di Arcola per l’organico da RD), ha bandito alla fine del 2015 una gara per la ricerca di un socio privato operativo per l’affidamento in concessione del servizio di trattamento della frazione residuale da raccolta differenziata dei rifiuti solidi urbani, gestione e manutenzione dell’impianto di bioessicazione e produzione CDR sito in Saliceti e trattamento delle frazioni organiche e verde da raccolta differenziata e la gestione dell’impianto di compostaggio sito in Boscalino, nonché la realizzazione dei relativi adeguamenti impiantistici finalizzati alla realizzazione di un digestore anaerobico.

Il progetto prevede di trasformare l’impianto esistente da impianto di compostaggio ad impianto di compostaggio e produzione di biometano. La realizzazione della configurazione finale passerà attraverso una prima fase che prevederà il solo ampliamento del locale ricevimento rifiuti, per rendere l’impianto sin da subito in grado di ricevere la totalità dei rifiuti organici raccolti nella Provincia. E’ inoltre previsto, senza modifiche sostanziali, il ripristino della sezione di compostaggio dedicata alla sola frazione verde conferita all’impianto. In un secondo momento verrà realizzato l’impianto di digestione anaerobica.

Il revamping dell’impianto di trattamento della frazione organica è stato dimensionato per una capacità di trattamento complessiva di circa 20.000 ton/anno di materiale in ingresso, costituito da matrice organica (raccolta differenziata FORSU e rifiuti organici di natura agro-industriale).

L’esistente sezione di trattamento aerobico verrà dedicata al compostaggio del digestato, e ne potrà trattare circa 5.200 ton/anno, con l’aggiunta di una quota di materiale ligneo cellulosico strutturante pari a circa 4.000 ton/anno.

La proiezione a saturazione della raccolta differenziata, basata sulla produzione pro capite attesa e sulla popolazione delle aree allo studio, porta ad un valore massimo potenziale pari a circa 25.800 tonnellate annue. Tale valore, rappresentando il massimo raggiungibile, potrà essere probabilmente coperto con un’efficienza reale del 85% nei prossimi cinque anni portando il valore di raccolta a circa 22.000 tonnellate/annuo.

Per quanto riguarda il soddisfacimento del soddisfacimento del fabbisogno impiantistico relativo alla frazione organica per comuni interni a bassa densità di produzione, il Piano d’Area, in coerenza con la previsione di PGR, prefigura quindi, al di là di una più intensa promozione del compostaggio domestico, la realizzazione di impianti di compostaggio di comunità di piccola taglia (entro le 80 t/anno, con relative semplificazioni amministrative) e in altri casi di impianti di taglia superiore, attraverso le procedure autorizzative già contemplate dal D lgs 152/06 prima dell’entrata in vigore della L 221/15.

Allo stato attuale risultano in fase di avvio una compostiera di comunità nel Comune di Rocchetta Vara e ne è stata finanziata una anche nel Comune di Portovenere, non ancora in esercizio, pensata per i residenti della vicina isola Palmaria.

La necessità di ulteriori piccoli impianti di compostaggio elettromeccanici verrà approfondita nelle successive revisioni del Piano d’Area in merito all’ottimale distribuzione di impianti di piccola/media taglia per il trattamento della frazione organica da differenziata nelle aree interne.
Il quadro complessivo sopra rappresentato potrà subire modifiche nelle successive fasi di pianificazione, con revisione e adozione dei piani in vista dell’avvio della procedura di VAS, previsto per l’estate 2017.

In seguito Autorità d’Ambito regionale potrà quindi approvare piano d’ambito regionale, che nelle contestuali fasi di redazione avrà parallelamente recepito e coordinato le previsioni dei 4 piani d’area.

Tali documenti individueranno definitivamente le soluzioni impiantistiche localizzate atte a soddisfare a regime il fabbisogno complessivo di impianti di recupero della frazione organica di rifiuti urbani raccolta in maniera differenziata.

In ogni caso i 4/5 impianti di digestione anaerobica pubblici previsti garantiranno processi di trattamento anaerobico che permettano di ottenere energia con l’uso del biogas ed un compostato da usare in agricoltura.

Il vantaggio dell’utilizzo della frazione organica dei rifiuti per la produzione di biogas con processi di digestione anaerobica è duplice dal momento che, oltre a produrre biogas per alimentare centrali cogenerative, non preclude la possibilità di produrre compost e stabilizzato. Infatti, dopo il processo di digestione anaerobica, il digestato viene inviato ad un processo di biostabilizzazione e separazione e diventa compost di qualità (partendo da FORSU) oppure stabilizzato da utilizzare in discarica come terreno di copertura o infra-strato (partendo dal RUI).

Si riepilogano di seguito le principali caratteristiche e output degli schemi di impianti specificati nell’Obiettivo 4 del Piano Regionale di Gestione dei Rifiuti (PRGR) della Liguria. Per ogni schema sono indicati i principali parametri in termini di potere calorifico e produzione biogas e una quantificazione comparativa di materiali e potenziali energetici in uscita dagli impianti, espressa in ktep.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CSS Sovallo (1)</td>
<td>PCI CSS</td>
<td>PCI CSS</td>
<td>PCI CSS</td>
<td>PCI CSS</td>
<td>PCI CSS</td>
</tr>
<tr>
<td>[t/anno]</td>
<td>[kcal/kg]</td>
<td>[t/anno]</td>
<td>[kcal/kg]</td>
<td>[t/anno]</td>
<td>[kcal/kg]</td>
</tr>
<tr>
<td>Frazione organica da differenziata totale</td>
<td>175.000</td>
<td>49.000</td>
<td>oltre 70.000</td>
<td>1750000</td>
<td>76100</td>
</tr>
<tr>
<td>Inerti (discarica o recupero)</td>
<td>49.000</td>
<td>76100</td>
<td>7,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas, vapori, VOC</td>
<td>2017.</td>
<td>76100</td>
<td>7,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biogas</td>
<td>2017.</td>
<td>76100</td>
<td>7,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contenuto termico (calore)</td>
<td>76100</td>
<td>7,6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella 63 – Principali caratteristiche ed output dei schemi di impianti previsti nel PRGR Liguria.

NOTA METODOLOGICA

(1) Valore stimato ipotizzando che il PCI di una sostanza secca completamente priva di materiale inerte sia pari a 7.000 kcal/kg.

(2) Stime che tengono conto dei seguenti dati di letteratura relativi alla produzione di biogas da digestione anaerobica: circa 150 m3/t di rifiuto in ingresso al digestore e 120Nm3/t di rifiuto in ingresso al digestore avente contenuto organico del 30% (di cui il 70% è costituito da volatile). Cautelativamente il PRGR ha ipotizzato una produzione di 100 Nm3/t di rifiuto in ingresso al digestore, con una composizione al 50% di metano. #
In sintesi, considerando lo scenario obiettivo al 2020 per la raccolta differenziata, la conseguente accresciuta disponibilità regionale di Frazione Organica (FORSU), ed ipotizzando che gran parte della quantità regionale di frazione organica (umida) proveniente dalla raccolta differenziata venga sottoposta al trattamento di digestione anaerobica, la quantità di biogas producibile è di circa 17,5 milioni di Nm³/anno pari a 7,6 ktep/anno di energia termica (calore).

Tenendo conto del fatto che un tipico gruppo elettrogeno cogenerativo a gas (a ciclo Otto) presenta un rendimento complessivo (elettrico + termico) del 75% circa, in regime cogenerativo la produzione energetica da biogas inviata al consumo finale (sia l’energia elettrica che il calore cogenerato verrebbero impiegati nel processo di trattamento dei rifiuti) ammonterebbe a circa 5 ktep/anno. Aggiungendo questo valore alla produzione da biogas in essere al 2012 pari a 11 ktep/anno, si configura uno scenario di piano al 2020 in cui il consumo finale di energia da biogas potrebbe raggiungere un totale di circa 16 ktep/anno, corrispondenti a circa 31 MW installati.

A tale scenario concorre il quadro degli incentivi nazionali e nello specifico la tariffa omnicomprensiva con la quale il GSE acquista l’energia elettrica prodotta da biogas, oltre che i Titoli di Efficienza Energetica (Certificati Bianchi) concessi per interventi di risparmio energetico (qualora il biogas venisse utilizzato per la produzione di calore in caldaie oppure in cogenerazione).

Per quanto riguarda gli aspetti ambientali legati all’installazione di impianti a biogas si rimanda alla relativa scheda dell’Allegato 2 al presente documento.

6.3.1.5. Le Smart Grid e gli accumuli di energia elettrica

Il significativo incremento nella produzione elettrica da fonti rinnovabili richiesto dal Burden Sharing, necessita di una profonda modifica del sistema di distribuzione dell’energia.

La rete tradizionale infatti è nata in un periodo in cui l’energia elettrica era prodotta da poche grandi centrali per poi essere disponibile a tutti attraverso una rete di distribuzione mono-direzionale. La proliferazione di impianti di taglia medio-piccola richiede reti di distribuzione intelligenti, le cosiddette “Smart Grid” (il concetto nasce per l’energia elettrica, ma è ampliabile anche alle reti del gas metano e per il teleriscaldamento), in grado di accogliere un crescente contributo locale e decentrato della cosiddetta generazione distribuita, in particolare i contributi crescenti di produzione da fonti energetiche rinnovabili (eolico e fotovoltaico) non programmabili e di piccola taglia, ma anche di mini- e micro-impianti cogenerativi.

Le nuove “smart-grid” sono reti che consentono flussi energetici bi-direzionali attraverso l’impiego di strumenti di ICT (Information and Communication Technologies), in grado di rilevare e monitorare in tempo reale i flussi di energia presenti in tutte le maglie della rete e di configurare automaticamente il sistema in modo da consentire l’esercizio ottimale, sicuro ed affidabile della rete.

In generale l’impiego delle “smart grid” mira a:

- consentire crescenti contributi della generazione distribuita ed in particolare delle fonti energetiche rinnovabili non-programmabili;
- migliorare l’efficienza del sistema attraverso la riduzione delle perdite di rete;
- aumentare l’affidabilità del servizio e della rete di distribuzione attraverso la capacità di autoanalisi e soprattutto di “self-healing capacity” (autoriparazione) automatica ed istantanea;
- evitare condizioni di sovraccarico nelle singole maglie della rete;

- fornire all’utenza informazioni e dati che consentano di ottimizzare e minimizzare i costi del servizio.

Una rete “smart” consente inoltre ad una stessa linea di assorbire energia da un certo nodo di connessione nei periodi in cui la domanda elettrica locale è maggiore della produzione locale, cedendola nel caso opposto: ciò consente di gestire non solo la produzione, ma anche la domanda di energia sul territorio. Attualmente la rete elettrica è strutturata per regolare la produzione, ma non i consumi, che variano esclusivamente, o quasi, in funzione delle esigenze dell’utente finale, cosicché il gestore, attraverso statistiche storiche ed informazioni quotidiane da parte dei grossi consumatori, si limita a prevedere la domanda di energia elettrica dei giorni successivi e a programmare le centrali da mantenere o da mettere in funzione. Tale procedura entra in crisi quando una quota significativa delle produzioni (quella relativa alle rinnovabili) non è programmabile e diventa quindi inevitabile dover gestire non solo l’offerta, ma anche la domanda di energia elettrica. Un primo passo in tal senso è già stato compiuto in Italia attraverso l’installazione nel periodo 2000-2003, degli “smart-meter”, che consentono di modificare le modalità di fornitura direttamente dal gestore delle rete senza dover intervenire direttamente sul sistema. Il prossimo passo potrà consistere in un sistema di tariffazione variabile, attraverso cui l’utente, che accetti la possibilità che alcune utenze non principali vengano interrotte o regolate direttamente dal gestore della rete, possa ottenere tariffe agevolate.

Un altro aspetto rilevante è legato al fatto che nelle reti tradizionali le protezioni sono private di capacità di riconoscere la provenienza di una condizione di sovraccarico o di guasto. Pertanto, per ovviare a questo problema, nelle reti monodirezionali le protezioni non-intelligenti sono collocate dal progettista seguendo una precisa gerarchia di intervento mirata ad isolare le condizioni di guasto ad un livello più basso possibile (verso le linee di bassa tensione che alimentano qualche isolato), in modo da limitare il numero di utenze colpite dal relativo disservizio. Concretamente: in caso di guasto (tipo corto-circuito) scatta soltanto l’interruttore di protezione che alimenta il ramo di rete interessato dal guasto, mentre l’interruttore generale rimane inserito in modo da assicurare il servizio alle rimanenti utenze non interessate dal guasto.

Invece nelle reti bi-direzionali, dove l’energia può provenire da qualsiasi direzione, occorre che i dispositivi di protezione siano di tipo “smart”, ovvero in grado di individuare l’origine del problema, e di coordinarsi fra loro in modo da isolare il guasto automaticamente senza inficiare il funzionamento del resto della rete. Ulteriore elemento indispensabile alla gestione intelligente dell’energia rinnovabile si individua nei sistemi di accumulo, fondamentali per qualsiasi sistema energetico ed ancor più nel caso in cui le fonti siano non programmabili.

Svincolarsi dall’obbligo di contemporaneità tra produzione e consumo di energia elettrica ha sempre rappresentato un obiettivo irrinunciabile per chi realizza e gestisce una rete elettrica. A livello nazionale questa esigenza è stata fino ad oggi soddisfatta mediante impianti di pompaggio idroelettrici dotati di bacini di accumulo d’acqua, in cui l’acqua prelevata dal bacino d’accumulo a valle viene pompata nei periodi di sovraproduzione elettrica (es. durante le ore notturne in cui la domanda è molto minore) in un bacino a monte per essere convogliata di nuovo a valle, mediante apposite condotte forzate, e produrre energia elettrica in concomitanza con i picchi di domanda di energia.

In Italia i pomaggi idroelettrici erano stati pensati e realizzati per coadiuvare l’energia nucleare poco flessibile. Oggi potrebbero essere utilizzati per sfruttare le eccedenze di energia rinnovabile non-programmabile (eolico e solare) come avviene in Spagna. Invece in Italia l’utilizzo dei pomaggi, dopo il picco massimo nel 2002, è calato dramaticamente (in contro-tendenza rispetto alle rinnovabili non-programmabili), per motivi di mercato.
Per diversi anni la ricerca si è focalizzata sugli accumuli ad idrogeno, ossia sull’uso delle eccedenze istantanee di energia elettrica per la produzione di idrogeno mediante elettrolisi dell’acqua ai fini di successive riutilizzazioni di questo combustibile. Tale linea di sviluppo, fortemente sostenuta negli anni passati, ha subito qualche rallentamento per via di difficoltà tecnologiche connesse con:

- la densità volumetrica dell’idrogeno molto sfavorevole (occupa molto spazio) che, pertanto, richiede per l’immagazzinamento la compressione dell’idrogeno ad alta pressione (200-700 atm), consumando il 10% del contenuto energetico, oppure la liquefazione (a -253°C) consumando il 30% del contenuto energetico, oppure ancora il ricorso a serbatoi ad idruri metallici (molto pesanti, idonei solamente per applicazioni stazionarie oppure su navi (sottomarini));
- l’efficienza complessiva di accumulo, al momento decisamente bassa (< 30%).

Una tecnologia più promettente, che consente di disporre di sistemi di accumulo distribuito, ma le cui prestazioni tecnico-economiche non sono ancora tali da consentire un’applicazione di mercato, è data dagli accumulatori elettrici con batterie al litio. L’efficienza e la durata di questi accumulatori sono notevolmente superiori rispetto alle classiche batterie al piombo, ma i loro costi ancora elevati rappresentano al momento un ostacolo alla diffusione commerciale. Una strategia che va sempre più consolidandosi a seguito dello sviluppo di autovetture a trazione elettrica o ibrida, vede proprio nei sistemi di accumulo di questi veicoli una modalità di stoccaggio e riutilizzo dell’energia eccedente in rete. Perché tale processo possa avvenire in maniera diffusa è fondamentale realizzare reti “smart” in grado di gestire l’offerta e la domanda di energia garantendo che la produzione eccedente vada a ricaricare sistemi di accumulo tra cui quelli a bordo di autovetture elettriche.

Dal maggio 2013 la Germania ha varato un nuovo sistema di incentivazione per l’utilizzo di batterie da abbinare agli impianti solari sia esistenti che futuri. È importante evidenziare come la concessione di questo incentivo sia legata non solo alla presenza di un accumulo elettrico, ma anche di un sistema di gestione “smart” predisposto per coadiuvare la gestione della rete elettrica e per contribuire alla sua stabilità.

Azioni per lo sviluppo delle Smart Grid
La Regione favorirà nei prossimi anni lo sviluppo di reti intelligenti sul proprio territorio anche attraverso la partecipazione ai **programmi europei**.
6.3.2. Le fonti rinnovabili termiche

Il settore delle “rinnovabili termiche” (ossia delle tecnologie per il riscaldamento e il raffrescamento alimentate con fonti rinnovabili) istituito dalla Direttiva 2009/28/CE, recepita in Italia col D Lgs n. 28/2011, è un settore il cui sviluppo è rimasto inferiore alle attese, ma che, secondo i piani del Governo, dovrà contribuire per almeno il 46% all’obiettivo nazionale di energia da rinnovabili al 2020, un apporto, cioè, di gran lunga maggiore rispetto a quello dell’eolico e del fotovoltaico messi insieme.

In sostanza, si tratta di portare alla ribalta le opportunità di una maggiore diffusione di tecnologie come il solare termico, le pompe di calore, le caldaie a biomasse solide, liquide e gassose, i caminetti e le stufe a pellets ed a tecnologia avanzata, gli impianti di cogenerazione a biomassa, le reti di teleriscaldamento.

Il DM 28/12/12 (il cosiddetto “Conto Termico”50) ha stabilito gli incentivi per interventi di piccole dimensioni relativi a impianti per la produzione di energia termica da fonti rinnovabili e sistemi ad alta efficienza:

- Sostituzione di impianti esistenti con generatori alimentati a fonti rinnovabili:
 - pompe di calore, per climatizzazione anche combinata per acqua calda sanitaria;
 - caldaie, stufe e termocamini a biomassa;
- sistemi ibridi a pompe di calore.

- Installazione di impianti solari termici anche abbinati a tecnologia solar cooling per la produzione di freddo.

Gli incentivi per interventi di piccole dimensioni relativi a impianti per la produzione di energia termica da fonti rinnovabili e sistemi ad alta efficienza possono essere richiesti dalle Amministrazioni Pubbliche e da soggetti privati a seconda delle tecnologie e con le modalità indicate nel Decreto “Conto Termico 2.0” e sul sito web del GSE.

6.3.2.1. La biomassa legnosa

L’utilizzo energetico della biomassa permette di realizzare importanti obiettivi anche non energetici come lo sviluppo di una importante filiera produttiva in grado di generare ricadute positive sulla manutenzione del territorio e conseguente riduzione del rischio frane e di incendi boschivi, creando nel contempo sviluppo economico e nuovi posti di lavoro in zone dell’entroterra.

Nonostante l’estesa superficie regionale coperta da boschi, in Liguria questa risorsa non risulta pienamente sfruttata per la difficoltà di creare filiere territoriali di approvvigionamento.

Dai risultati delle attività di promozione dell’uso di biomassa locale nelle Aree Campione (Val Bormida e Val di Vara), svolte nell’ambito del PEAR 2003, nonché dei numerosi progetti finanziati dalla Commissione Europea su questo tema e dall’attuazione di due programmazioni del Programma di Sviluppo Rurale (2000-06 e 2007-13) emergono i seguenti ostacoli ai fini dello sviluppo di una filiera del legno ligure:

- forte parcellizzazione fondiaria;
- ridotte dimensioni delle imprese;
- talora scarsa evoluzione tecnologica nei mezzi e nei metodi utilizzati per le varie fasi del processo: taglio, esbosco, stoccaggio, trasporto etc.;
- alti costi amministrativi, sovrapposizione normativa e di competenze all’atto della concessione dell’autorizzazione all’intervento di taglio/esbosco;
- complessa orografia del territorio che spesso rende inaccessibili ampie aree boschive su versanti ripidi;
- carenza di coordinamento e di informazione tra i diversi soggetti pubblici e privati coinvolti o coinvolgibili nel processo;
- forte concorrenza sul mercato del legname estero;

50 Modificato dal D Lgs 102/2014 (successivamente integrato dal D Lgs 141/2016) e aggiornato da D.I. 16 febbraio 2016 (Conto Termico 2.0)
Il superamento delle barriere allo sfruttamento della biomassa legnosa richiede interventi pubblici volti a favorire l’avvio della filiera nonché una fase di pianificazione e un lavoro di semplificazione normativa che favoriscano la corretta gestione forestale, definendo ruoli e compiti che ogni stakeholder locale deve assumere nell’ambito delle filiere.

I punti di forza del processo di filiera del legno in Liguria sono invece:
• notevole estensione dei boschi;
• adeguata varietà delle specie valorizzabili anche per usi non energetici (castagno, ciliegio, faggio, roverella, …);
• presenza di aree boschive di proprietà pubblica di pregio ed interesse forestale;
• presenza di consorzi di proprietari boschivi;
• opportunità occupazionali derivanti dall’eventuale nascita di piccole imprese di taglio, di lavorazione e di distribuzione del prodotto legno;
• disponibilità di aiuti finanziari per l’avvio di impresa (Fondi Provinciali, Regionali ed Europei);
• possibilità di crescita professionale degli addetti grazie alla recente attivazione da parte della Regione dei nuovi percorsi di formazione in campo forestale;
• riattivazione di programmi di manutenzione del territorio con positive ricadute ai fini della stabilità idro-geologica del territorio.

A fronte di tali considerazioni, la Regione Liguria intende dotarsi di una strategia strutturata per lo sfruttamento di tale fonte sul proprio territorio a partire da un’analisi della domanda e dell’offerta di biomassa, così articolata:
• studio del potenziale teorico;
• valutazione del potenziale economicamente sostenibile;
• analisi della domanda.

L’offerta di biomassa sul territorio regionale è funzione sia della relativa disponibilità nel medio-lungo termine, che dei costi di approvvigionamento e trattamento. Un’utilizzazione a medio-lungo termine richiede che il patrimonio boschivo venga governato secondo i criteri della Gestione Forestale Sostenibile (GFS), che garantisca la compatibilità tra gli obiettivi produttivi e la salvaguardia del patrimonio forestale. Ciò pone un primo vincolo: la quantità massima utilizzabile non può essere superiore al tasso di accrescimento del bosco (che varia in funzione della specie arborea). A titolo esemplificativo il ciclo di rinnovo\(^ {51} \) di un bosco di castagno è di circa 25 anni, che diventano 30 nel caso di conifere, arrivando fino a 50 per i boschi di quercia. Ciò implica che il quantitativo massimo di biomassa annualmente sfruttabile un bosco di castagno è pari 1/25 della massa legnosa inizialmente presente nel bosco.

L’uso a fini energetici del bosco è in realtà molto minore del suddetto valore massimo in quanto condizionato da aspetti di natura economica: alcuni tipi di legname infatti trovano la propria valorizzazione

\(^ {51} \) Lasso di tempo a valle del quale la curva di accrescimento del singolo albero assume un andamento asintotico orizzontale che in termini pratici indica che l’albero ha smesso di fatto di crescere.
ottimale come materia prima nell’industria mobiliera o delle costruzioni. Anche boschi utilizzati a soli fini energetici presentano limitazioni di tipo economico legati ai costi di taglio, trasporto e lavorazione della biomassa che variano in funzione della presenza o meno di strade di accesso al bosco, della complessità orografica del territorio e della distanza tra aree di approvvigionamento ed aree di utilizzo.

La Regione Liguria ha messo a punto nell’ambito del progetto europeo Biomass una banca dati, basata su tecnologia Web GiS, che contiene le informazioni relative alle aree boschive dell’intera regione, nonché delle relative potenzialità di utilizzo. Le informazioni della banca dati, confrontate con i risultati del progetto Robinwood, hanno consentito di elaborare una stima del potenziale reale di sfruttamento a fini energetici del bosco ligure che ammonta a circa 145 ktep/anno, a fronte del potenziale teorico di 463 ktep stimato nel PEAR 2003 sulla base della sola disponibilità di biomassa senza tener conto di fattori economici.

Tale stima è stata condotta considerando la sola biomassa presente all’interno di aree con accesso potenziale a distanza non superiore a 200 metri dalla viabilità principale. Non sono state invece considerate aree attualmente non servite, anche se spesso dotate di viabilità adeguata alla raccolta di biomassa. Il miglioramento delle condizioni di filiera prima citate, tra le quali l’adeguamento delle infrastrutture, consentirà quindi di ricondurre il potenziale reale sopra stimato (145 ktep/anno) a valori più in linea con il valore teorico indicato da PEAR 2003 (463 ktep/anno).

Da quanto evidenziato l’avvio di una filiera bosco, anche quando non finalizzata alla sola produzione di energia, richiede il superamento di ostacoli di natura burocratica, organizzativa, infrastrutturale e più in generale di tipo culturale, i cui tempi potrebbero apparire difficilmente compatibili con la scadenza del 2020 determinata dal Decreto Burden Sharing. Un atteggiamento prudente porterebbe quindi a rivedere al ribasso il potenziale della biomassa locale realmente sfruttabile entro tale scadenza.

Tuttavia l’obiettivo regionale di garantire il raggiungimento della quota di Burden Sharing attribuita alla Liguria non può attestarsi sotto i 181 ktep/anno.

La Regione ritiene quindi strategico disegnare un’azione da attivarsi nel breve termine per creare una significativa crescita nella domanda di energia da biomassa così da garantirsi nel breve periodo non solo il soddisfacimento dell’obiettivo Burden Sharing, ma anche un adeguato impulso a politiche territoriali integrate.

Occorre infatti ricordare che il settore delle energie da biomassa (forestale) è tra i comparti energetici quello che, pur presentando il massimo di difficoltà attuative, potenzialmente può riservare, se ben governato, il massimo di effetti collaterali positivi.

Gli effetti positivi da valutare nell’ambito delle strategie ambientali regionali riguardano: il ciclo del carbonio, gli aspetti occupazionali lungo tutta la filiera, gli effetti sul presidio del territorio, la conservazione della biodiversità e valorizzazione della Rete Ecologica Regionale, il mantenimento dei paesaggi agrari e rurali, il mantenimento della rete escursionistica, la manutenzione delle aste fluviali, la caratterizzazione degli acquisti verdi regionali ed in generale le azioni di prevenzione di disastri naturali quali frane, alluvioni ed incendi boschivi.

Gli aspetti critici che dovranno essere presi in considerazione per realizzare le linee di sviluppo del piano sono: le esigenze di salvaguardia dei valori ambientali, la necessità di incidere su un quadro normativo complesso, l’individuazione di percorsi per evitare la distorsione del mercato dovuta all’offerta informale ed all’offerta di biomassa di provenienza non regionale, l’esigenza di rafforzare i servizi pubblici e privati al settore, l’opportunità di indirizzare la programmazione dei fondi allo specifico rafforzamento del settore ai fini della creazione della filiera corta legno-energia.

Per quanto riguarda l’occupazione attivabile dalla filiera, si ricordano, oltre ai settori direttamente attivati dalle attività forestali, il settore dei materiali per la bioedilizia realizzabili in legno, l’attivazione della produzione locale di pellet (per diminuire gradualmente la dipendenza strutturale dal mercato di provenienza extraregionale) ed il turismo rurale.
La Regione Liguria ha approvato con LR n. 4/2014 le “Norme per il rilancio dell’agricoltura e della selvicoltura, per la salvaguardia del territorio rurale ed istituzione della banca regionale della terra”.

Con tale provvedimento la Regione intende favorire il ritorno nelle campagne e nei boschi del lavoro e della presenza dell’uomo, per invertire la tendenza all’abbandono e al degrado degli ultimi decenni.

La nuova legge, insieme a quanto dispone il Piano di sviluppo rurale con finanziamenti europei e nazionali, intende favorire il ritorno alla terra con questi strumenti principali:

• la Banca Regionale della Terra: una base dati informatica accessibile e consultabile da chiunque, nella quale, su segnalazione dei proprietari, saranno inserite le coordinate catastali dei terreni disponibili per essere recuperati alle attività agricole. Potranno essere segnalati anche quei terreni che risultano abbandonati;

• diverse tipologie di contributi a favore di imprenditori agricoli, per il recupero dei terreni incolti (fino a 500 euro per ettaro) e per l’acquisizione di particelle funzionali all’aumento o all’accorpamento della superficie aziendale; proprietari forestali, per l’acquisto di nuovi fondi o per la copertura delle spese di costituzione dei consorzi; Comuni e consorzi, per interventi di manutenzione straordinaria;

• semplificazioni normative per chi vuole riprendere l’attività agricola su terreni terrazzati invasi dal bosco, al fine di rendere più veloce la procedura per l’assegnazione delle terre incolte.

La Regione ha inoltre indetto a Novembre 2013 un bando di gara per l’acquisizione in gestione di foreste del patrimonio indisponibile regionale.

Per quanto riguarda gli aspetti tecnologici, esiste un’ampia gamma di impianti a biomassa dai caminetti e piccole caldaie autonome a cippato o a pellet per il riscaldamento invernale di singole abitazioni fino agli impianti di cogenerazione e di gassificazione, passando per gli impianti di teleriscaldamento. I piccoli impianti sono economici e di semplice installazione ed utilizzo, essendo ormai dotati di sistemi di controllo che ne consentono una gestione del tutto simile a quella di una comune caldaia a metano, fatto salvo l’onere di caricare le tramogge di alimentazione a cadenza di 1÷2 giorni e di eliminare le moderate quantità di ceneri prodotte dalle efficienti camere di combustione moderne. Per contro gli impianti di piccola taglia generano problemi di tipo ambientale, essendo sprovvisti di adeguati sistemi di filtraggio dei fumi e di abbattimento delle polveri. Sono quindi indicati in ambiti che non presentano problematiche riguardanti la qualità dell’aria, quali case isolate o abitazioni in piccoli comuni, dove peraltro l’utilizzo di legna è già diffuso per via dei classici camini aperti, sicuramente meno efficienti anche dal punto di vista della qualità dell’aria. Si evidenzia che il DM 28/12/2012 cd “Conto Termico”, aggiornato da DI 16 febbraio 2016 (Conto Termico 2.0) incentiva anche gli interventi di sostituzione di impianti di climatizzazione invernale con caldaie a biomassa che devono rispondere a specifici requisiti in termini di emissioni inquinanti e di rendimento di generazione.

Caratteristiche ambientali ed energetiche molto migliori si riscontrano nelle caldaie di media taglia, da qualche centinaio di kW fino al MW, adatte per il riscaldamento centralizzato di fabbricati o per attività produttive quali il riscaldamento delle serre. Tali macchine sono generalmente dotate di sistemi di purificazione dei fumi, la cui efficienza cresce con la taglia. Inoltre questi impianti sono dotati di silos di stoccaggio riempiti direttamente da autocarro e di sistemi automatici di alimentazione del focolare che eliminano il problema del riempimento periodico a carico dell’utente. Impianti di taglie più considerevoli al servizio di reti di teleriscaldamento richiedono la realizzazione di condotte i cui costi, spesso prevalenti sull’insieme delle opere, possono rendere anti-economica l’iniziativa. Per contenere i costi di realizzazione di una rete di teleriscaldamento occorre localizzarla in aree ad alta densità energetica (MWh/km²anno), in modo da ridurre l’estensione della rete a parità di energia trasportata.

Tecnologie più complesse sono costituite da impianti di cogenerazione mediante motori Stirling o turbine a vapore, con taglie oscillanti tra i 50÷60 kW elettrici e 200÷250 kWt (Stirling) fino a 1 MWe e 4 MWt. Tali sistemi presentano costi elevati che si aggirano intorno ai 5000 €/kW installato e che possono essere
ammortizzati solo nei casi di utilizzo nell’ambito di processi industriali a ciclo continuo o in ambito civile a servizio di piscine frequentate in maniera continuativa durante l’anno.

Affrontando infine il tema della gassificazione, bisogna evidenziare che, nonostante da anni questa tecnologia venga indicata come particolarmente vantaggiosa dal punto di vista energetico ed ambientale, ad oggi essa presenta un mercato estremamente ridotto. Il processo di gassificazione presenta il vantaggio di non generare emissioni, in quanto il prodotto finale consiste in un gas di sintesi, successivamente combusto in caldaie o cogeneratori per produrre energia, ed un residuo solido inerte sfruttabile in ambito industriale o come materiale inerte da costruzione. Il punto debole di questa tecnologia si individua però nel basso potere calorifico del gas prodotto che, se le caratteristiche della biomassa in ingresso non vengono mantenute costanti, può scendere a livelli tali da non garantire le condizioni di combustione. La biomassa boschiva per sua natura ha caratteristiche variabili in funzione ad esempio dell’umidità, dell’area e del periodo di raccolta: ciò rende difficoltosa l’alimentazione a ciclo continuo di questo tipo di impianti al fine di ammortizzarne gli elevati costi di realizzazione e gestione.

Considerati i suddetti aspetti relativi alle scelte tecnologiche e le difficoltà nell’organizzazione a livello regionale della filiera legno-energia, si prevede che la strategia per lo sfruttamento della biomassa in Liguria si concentri sull’adozione di impianti di taglia medio-piccola per la produzione di calore, privilegiando in particolare le soluzioni dotate di sistemi di filtraggio dei fumi efficienti.

L’obiettivo di 181 ktep/anno è comunque ambizioso e, come già evidenziato, richiede la creazione di un parco impiantistico di notevoli dimensioni. Nel caso in cui la biomassa venga utilizzata per la climatizzazione invernale nel settore civile in località dell’entroterra caratterizzate da temperature esterne più basse della media ligure, un parco impiantistico in grado di produrre 181 ktep/anno si attesterrebbe su una potenza installata intorno ai 1750 MWt, supponendo che le macchine operino mediamente al 50% della potenza di targa. Tale valore scende significativamente se invece la biomassa viene utilizzata per produrre calore in processi industriali a ciclo continuo (365gg/anno x 24h/gp ipotizzando un funzionamento medio pari all’80% della potenza di targa).

È del tutto evidente che un parco di tale portata richiede investimenti importanti: la consistenza e la complessità del processo richiedono l’intervento di aziende specializzate, ossia di Energy Service Company (ESCO) con adeguata esperienza nello sfruttamento della biomassa boschiva che investano capitale proprio nella realizzazione e gestione dell’intera filiera, dalla raccolta alla produzione di energia, o in alternativa che operino come soci supervisori in un progetto volto al coinvolgimento di aziende liguri nella creazione di una ESCo locale. Soprattutto in questo secondo caso un aspetto rilevante è legato al reperimento del capitale necessario alla realizzazione del progetto, ossia all’accesso al credito particolarmente difficoltoso nell’attuale fase economica.

Azioni per lo sviluppo delle fonti rinnovabili termiche: biomassa legnosa
La Regione si attiverà al fine di promuovere azioni volte a superare l’ostacolo dell’accesso al credito, valutando strumenti finanziari quali la creazione di “confidi”, ossia di consorzi di aziende che istituiscono fondi di garanzia a livello di confederazioni (quali ad esempio Confindustria, Confartigianato), ai quali potrà affiancare misure specifiche volte a favorire la creazione della filiera legno-energia e la produzione di energia da biomassa forestale. In particolare, il PSR 2014-2020 (Tabella 64 e Tabella 65) prevede misure specifiche volte alla promozione di impianti funzionanti a biomassa che sfruttino scarti di produzione agricola, agro-industriale o forestale locale, in sinergia con quanto previsto dal Programma Forestale Regionale (PFR).

In termini di taglie e caratteristiche degli impianti, il PSR identifica, al fine dell’ammissibilità a finanziamento degli interventi, impianti per la produzione di energia termica di potenza non superiore a 5 MWt alimentati da biomassa approvvigionata in un raggio di 70 km.

È inoltre di notevole importanza, vista la portata diffusa dell’iniziativa e le caratteristiche territoriali delle regioni confinanti, coordinare le iniziative relative a questa tecnologia con le altre regioni, avviando
inizie e progetti congiunti, al fine di approfondire le analisi sulla disponibilità di risorsa ed i bacini di utenza e di rafforzare le filiere interregionali.

Il Programma Forestale Regionale relativo al quinquennio 2007-2011 ed il suo aggiornamento (attualmente in corso), prevedono infatti la promozione della semplificazione degli iter autorizzativi delle attività boschive, comprese le tematiche connesse alla viabilità ed alle infrastrutture forestali, la promozione su scala locale dei prodotti legnosi (cippato, produzione di legna formato stufa, tronchi di maggior valore commerciale) e la promozione delle filiere per l’approvvigionamento delle biomasse anche attraverso il ricorso ad ESCo.

La proposta di aggiornamento del PFR prevede sette Strumenti Operativi (S.O.), presentati come altrettanti allegati, atti a fornire informazioni pratiche agli stakeholder per la messa in opera delle azioni che Regione intende supportare. Fra questi lo Strumento Operativo 7 è inerente alle “Indicazioni per lo sviluppo della filiera bosco energia”. Tale strumento ribadisce la volontà del PFR di promuovere a scala locale l’impiego di biomasse forestali derivate dalla gestione sostenibile del patrimonio forestale, così come indicato dalla normativa europea e nazionale vigente.

I principi guida della Regione Liguria per lo sviluppo della filiera bosco-energia sono i seguenti:

- legalità e responsabilità in termini sociali ed ambientali, al fine di garantire l’evidenza del rispetto delle norme ambientali, l’adeguata formazione e la sicurezza degli operatori;
- salvaguardia ambientale, al fine di evitare la perdita netta di risorsa, garantendo una naturale ripresa delle provvigioni, perseguendo la protezione di habitat forestali di particolare pregio e assicurando la riduzione degli impatti collaterali alla movimentazione ed all’uso della risorsa (emissioni in atmosfera);
- ricadute locali, attraverso lo sviluppo di filiere corte che implichino un avvicinamento fra aree di origine della risorsa e fruitori/destinatari dell’energia prodotta, anche razionalizzando i soggetti economici coinvolti nella filiera e coinvolgendo produttori locali con conseguente miglior inserimento nel contesto sociale locale;
- efficienza e sostenibilità economica, per mezzo di un’adeguata progettazione e programmazione della filiera, con particolare attenzione alla piena utilizzazione delle diverse forme di energia ottenibili al fine di evitare dispersioni o dissipazioni.

Infine occorre ricordare che l’industria metalmeccanica ligure vanta una storia importante nel settore dei generatori di calore/vapore, che negli ultimi anni è stato oggetto di un forte ridimensionamento a causa della crisi economica e per la concorrenza dei paesi orientali. La riattivazione di una filiera specificamente dedicata alla costruzione di caldaie per la biomassa sarebbe sicuramente importante in termini di ricadute occupazionali ed economiche sul territorio. La Regione valuterà azioni in tal senso con il supporto delle associazioni di categoria.

<table>
<thead>
<tr>
<th>PSA 2014-2020</th>
<th>Misura</th>
<th>Sottomisure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M04</td>
<td>04.01 supporto agli investimenti nelle aziende agricole</td>
</tr>
<tr>
<td></td>
<td>Investimenti in immobilizzazioni materiali (Art. 17)</td>
<td>04.02 supporto agli investimenti nella trasformazione, commercializzazione e sviluppo dei prodotti agricoli</td>
</tr>
<tr>
<td></td>
<td>M06</td>
<td>06.02 aiuto all’avvio di imprese per attività non agricole in aree rurali</td>
</tr>
<tr>
<td></td>
<td>Sviluppo delle aziende agricole e delle imprese (Art. 19)</td>
<td>06.04(5c) investimenti nella creazione di piccole imprese in zone rurali</td>
</tr>
<tr>
<td></td>
<td>M07</td>
<td>07.02 Infrastrutture essenziali alle popolazioni rurali</td>
</tr>
<tr>
<td></td>
<td>Servizi di base e rinnovamento dei villaggi nelle zone rurali (Art. 20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M08</td>
<td>08.06 investimenti in tecnologie forestali, trasformazione, movimentazione e commercializzazione dei prodotti delle foreste</td>
</tr>
<tr>
<td></td>
<td>Investimenti nello sviluppo delle aree forestali e nel miglioramento della reddittività delle foreste (articoli da 21 a 26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M09</td>
<td>09.01 costituzione di associazioni e organizzazioni di produttori nei</td>
</tr>
</tbody>
</table>
organizzazioni di produttori (Art.27) | settori agricolo forestale
---|---
M16 Cooperazione | 16.02 supporto per progetti pilota e per lo sviluppo di nuovi prodotti, pratiche, processi e tecnologie
| 16.08 sostegno per la stesura di piani forestali di secondo livello

Tabella 64 - Elementi del PSR 2014-2020 correlati alla diffusione di impianti a biomassa

<table>
<thead>
<tr>
<th>PSR 2014-2020</th>
<th>MISURA M04 - Investimenti in immobilizzazioni materiali (Art. 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La misura persegue principalmente l’obiettivo di stimolare la competitività del settore agricolo e forestale. Essa nel suo complesso ha anche un effetto indiretto sulla realizzazione di uno sviluppo territoriale equilibrato delle economie e comunità rurali, compresi la creazione e il mantenimento di posti di lavoro. La misura concorre ai seguenti obiettivi trasversali:</td>
<td></td>
</tr>
<tr>
<td>• Innovazione: Gli interventi previsti concorrono a migliorare l’efficienza e la competitività delle filiere produttive e la qualità dei prodotti agroalimentari.</td>
<td></td>
</tr>
<tr>
<td>• Ambiente: Gli investimenti produttivi di cui alle sottomisure 04.01, 04.02 e 04.03 sostengono anche il miglioramento delle prestazioni ambientali delle aziende attraverso risparmio idrico, efficienza energetica, riduzione di emissioni inquinanti, difesa del suolo dall’erosione e riutilizzo di scarti e sottoprodotti.</td>
<td></td>
</tr>
<tr>
<td>SOTTOMISURA M4.01 SUPPORTO AGLI INVESTIMENTI NELLE AZIENDE AGRICOLE</td>
<td></td>
</tr>
<tr>
<td>Tipo di intervento</td>
<td>Destinatari (gruppi obiettivo) e Beneficiari</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Il tipo di operazione persegue l’obiettivo di:</td>
<td></td>
</tr>
<tr>
<td>• migliorare l’efficienza economica aziendale;</td>
<td></td>
</tr>
<tr>
<td>• accrescere il valore aggiunto aziendale tramite la trasformazione in azienda e la vendita diretta in azienda dei prodotti aziendali;</td>
<td></td>
</tr>
<tr>
<td>• migliorare le prestazioni ambientali aziendali con particolare riferimento a risparmio idrico, energetico, riduzione delle emissioni inquinanti, difesa del suolo dall’erosione;</td>
<td></td>
</tr>
<tr>
<td>• miglioramento delle condizioni di sicurezza del lavoro.</td>
<td></td>
</tr>
<tr>
<td>Sono ammissibili le spese relative ad investimenti finalizzati alla produzione di energia elettrica o termica da destinarsi esclusivamente all’utilizzo aziendale, attraverso lo sfruttamento di fonti energetiche rinnovabili (solare, eolico) e/o di biomasse solo derivanti da sottoprodi e/o residui, di origine prevalentemente aziendale, derivanti dalla lavorazione di prodotti agricoli e forestali. I suddetti impianti devono essere commisurati alle esigenze energetiche, su base annuale, relative ai cicli produttivi agricoli dell’azienda agricola interessata. È escluso qualsiasi sostegno alla produzione di biocombustibili derivanti da produzione agricola dedicata. La produzione di energia è limitata ai combustibili derivanti da scarti aziendali o di origine locale, al fine di minimizzare le necessità di trasporto, e derivanti altresì da una gestione attiva delle foreste, in modo da favorire l’avvio di filiere corte. Gli impianti funzionanti a biomasse dovranno sfruttare scarti di produzione agricola, agro-industriale o forestale locale, minimizzando le necessità di trasporto. Con il termine “locale” si intende una distanza di non più di 70 km tra il luogo di produzione e il luogo di utilizzo; Gli investimenti in impianti per la produzione di energia, il cui principale obiettivo è la produzione di energia elettrica dalle biomasse sono ammissibili al sostegno solo se è utilizzata una percentuale di energia termica pari almeno al 40%, ai sensi dell’articolo 13 del regolamento di esecuzione (UE) n. 807/2014 della Commissione.</td>
<td></td>
</tr>
<tr>
<td>SOTTOMISURA M04.02 SUPPORTO AGLI INVESTIMENTI NELLA TRASFORMAZIONE, COMMERCIALIZZAZIONE E SVILUPPO DEI PRODOTTI AGRICOLI</td>
<td></td>
</tr>
<tr>
<td>Tipo di intervento</td>
<td>Destinatari (gruppi obiettivo) e Beneficiari</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Il tipo di operazione persegue l’obiettivo di:</td>
<td></td>
</tr>
</tbody>
</table>
| Sono beneficiarie del sostegno
- migliorare l’efficienza della filiera, con particolare riferimento alla creazione o consolidamento di sbocchi di mercato stabili e duraturi per i produttori del prodotto di base;
- migliorare l’efficienza economica aziendale;
- migliorare le prestazioni ambientali aziendali con particolare riferimento a risparmio idrico, energetico, riduzione delle emissioni inquinanti, riutilizzo degli scarti e dei sottoprodotti;
- migliorare le condizioni di sicurezza del lavoro;
- favorire l’adesione a sistemi di qualità certificata in base a norme europee, nazionali e regionali di cui alla misura 3.1.

Sono ammissibili gli investimenti finalizzati alla produzione di energia elettrica o termica da destinarsi esclusivamente all’utilizzo aziendale, attraverso lo sfruttamento di fonti energetiche rinnovabili: solare, eolico o di biomasse solo derivanti da sottoprodotti derivanti dalla trasformazione, prevalentemente aziendale, di prodotti agricoli o forestale.

Gli impianti devono essere commisurati alla dimensione dell’azienda e alle esigenze energetiche relative ai cicli produttivi su base annuale. E’ escluso qualsiasi sostegno per impianti che utilizzi biocombustibili derivanti da produzione agricola dedicata. Limitatamente agli investimenti il cui principale obiettivo è la produzione di energia elettrica, questi sono ammissibili al sostegno solo se è utilizzata una percentuale di energia termica pari almeno al 40%, ai sensi dell’articolo 13 del regolamento di esecuzione (UE) n. 807/2014 della Commissione.

MISURA M06 – Sviluppo delle aziende agricole e delle imprese (Art. 19)

La misura persegue l’obiettivo di realizzare uno sviluppo territoriale equilibrato delle economie e comunità rurali, compresi la creazione e il mantenimento di posti di lavoro. Essa ha un ruolo molto importante nel rivitalizzare le aree rurali della Liguria integrando diversi settori e attività.

La misura contribuisce al raggiungimento degli obiettivi trasversali relativi all’innovazione e ai cambiamenti climatici attraverso il finanziamento di caldaie a biomasse e relative reti di distribuzione del calore che incentivano l’utilizzo razionale di biomasse forestali con effetti benefici sull’equilibrio idro-geologico e sul sequestro del carbonio. Anche il ricambio generazionale nel settore agricolo e forestale, che porta nuove energie e maggiore predisposizione al cambiamento, contribuisce all’innovazione.

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>La tipologia di operazione consiste nel sostegno:</td>
<td>Per l’avvio di nuove attività nel settore forestale:</td>
</tr>
<tr>
<td>- all’avvio di nuove attività nel settore forestale;</td>
<td>• persone fisiche;</td>
</tr>
<tr>
<td>- all’avvio di nuove attività di servizi alla persona.</td>
<td>• micro e piccole imprese, comprese le imprese agricole.</td>
</tr>
<tr>
<td>Il sostegno è limitato all’avvio di nuove micro o piccole imprese. La tipologia di operazione è operativa esclusivamente nelle aree rurali intermedie (aree C) e nelle aree rurali con problemi di sviluppo (aree D) come definite dall’Accordo di Partenariato alla Sezione 1A - capitolo 1.1.4 “sfide territoriali”. La localizzazione della nuova attività, al fine di garantire la stabilità dell’operazione finanziata e un concreto sviluppo delle zone rurali, deve avvenire con le seguenti specifiche:</td>
<td>Per l’avvio di nuove attività di servizi alla persona rivolta a bambini in età prescolare e scolare, anziani e soggetti non autosufficienti:</td>
</tr>
<tr>
<td>- in caso di impresa individuale, il titolare, al momento della concessione dell’aiuto, deve essere residente in una zona rurale della regione Liguria. La sede aziendale dovrà essere localizzata in una zona rurale della regione Liguria;</td>
<td>• imprese agricole;</td>
</tr>
<tr>
<td>- in caso di società di persone, la sede aziendale deve essere localizzata in una zona rurale della Liguria;</td>
<td>• coaduvanti famigliari del titolare dell’impresa agricola.</td>
</tr>
<tr>
<td>- nel caso di società in accomandita semplice, tutti i soci accomandatari devono risiedere in una zona rurale della Liguria al momento della concessione dell’aiuto;</td>
<td>Sono considerate imprese agricole le imprese dotate di</td>
</tr>
<tr>
<td>- in caso di società di capitali, i detentori delle cariche a cui corrispondono i</td>
<td></td>
</tr>
</tbody>
</table>
poteri decisionali (amministratore delegato, amministratore unico, ecc.) devono risiedere in una zona rurale della Liguria al momento della concessione dell’aiuto. I vincoli relativi alla localizzazione dell’azienda devono perdurare per tutto il periodo di vincolo.

partita IVA con codice attività riferito all’attività agricola.

<table>
<thead>
<tr>
<th>SOTTOMISURA M06.04(Sc) INVESTIMENTI NELLA CREAZIONE DI PICCOLE IMPRESE IN ZONE RURALI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di intervento</td>
</tr>
<tr>
<td>L’operazione intende favorire la creazione o lo sviluppo di piccole imprese nelle zone rurali, con i seguenti obiettivi:</td>
</tr>
<tr>
<td>• creare o stabilizzare posti di lavoro;</td>
</tr>
<tr>
<td>• favorire lo sviluppo di imprese forestali;</td>
</tr>
<tr>
<td>• favorire la produzione di energia termica a partire da biomasse forestali di origine locale (approvvigionamento della biomassa in un raggio di 70 Km).</td>
</tr>
<tr>
<td>L’operazione riguarda quindi la produzione di energia termica a partire da biomasse forestali di origine locale.</td>
</tr>
<tr>
<td>Sono ammissibili i costi relativi a:</td>
</tr>
<tr>
<td>• acquisto e installazione di caldaie a biomassa, compresi i manufatti edili necessari, per la produzione di energia termica di potenza non superiore a 5 MW termici;</td>
</tr>
<tr>
<td>• realizzazione della rete di distribuzione del calore.</td>
</tr>
<tr>
<td>Ai fini di ridurre l’impatto ambientale il sostegno è limitato agli impianti che possono garantire un approvvigionamento della biomassa in un raggio di 70 Km.</td>
</tr>
<tr>
<td>La tipologia di operazione è operativa esclusivamente nelle aree rurali intermedie (aree C) e nelle aree rurali con problemi di sviluppo (aree D), come definite dall’Accordo di Partenariato alla Sezione 1A - capitolo 1.1.4 “sfide territoriali”.</td>
</tr>
<tr>
<td>Gli investimenti sostenuti nell’ambito di questa operazione devono essere conformi all'articolo 13 del regolamento delegato (UE) n. 807/2014 con particolare riferimento alla lettera c) - efficienza energetica - e lettera e) per la quale si stabilisce che non è ammesso l’utilizzo di cereali ed altre colture amideacee, zucchero e oleaginose e altre colture agricole e forestali dedicate, ma solo di biomasse legnose (non da colture dedicate), sottoproducti agricoli (piastra, stocchi, residui di potatura, ecc.) e agro-industriali (sansa, vinacce, ecc.).</td>
</tr>
</tbody>
</table>

MISURA M07 – Servizi di base e rinnovamento dei villaggi nelle zone rurali (Art. 20)

La misura persegue l’obiettivo di realizzare uno sviluppo economico territoriale delle comunità rurali compresi la creazione e il mantenimento di posti di lavoro. Essa sostiene esclusivamente interventi nelle aree rurali intermedie (aree C) e nelle aree rurali con problemi di sviluppo (aree D).

<table>
<thead>
<tr>
<th>SOTTOMISURA M07.02 INFRASTRUTTURE ESSENZIALI ALLE POPOLAZIONI RURALI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di intervento</td>
</tr>
<tr>
<td>L’operazione offre sostegno ad investimenti finalizzati alla creazione, al miglioramento o all’espansione di ogni tipo di infrastrutture su piccola scala, compresi gli investimenti nelle energie rinnovabili e nel risparmio energetico.</td>
</tr>
<tr>
<td>Sono ammessi al sostegno soltanto gli investimenti di realizzazione delle infrastrutture su piccola scala, relativi a impianti per la produzione e la distribuzione di energia termica proveniente da biomasse forestali e/o da scarti e sottoproducti agricoli e agro-industriali, compreso il trattamento delle biomasse per renderle utilizzabili a fini energetici (cippatura, disidratazione, ecc.). Sono inoltre ammessi gli investimenti per la costruzione, miglioramento o ampliamento di strade d’accesso ai borghi rurali e loro viabilità interna comprese le opere accessorie quali fognatura e pubblica illuminazione.</td>
</tr>
<tr>
<td>Relativamente agli investimenti per la realizzazione di impianti per la produzione di energia termica:</td>
</tr>
</tbody>
</table>
La contemporanea dell'ambiente utenze Inoltre:

- sono ammissibili a finanziamento impianti di potenza non superiore ad 5 MW;
- è escluso l’impiego di cereali ed altre colture amidacee, zuccherine, oleaginose, inclusi i biocarburanti e altre colture agricole e forestali dedicate;
- devono rispettare criteri minimi di efficienza energetica;
- l’energia termica prodotta dagli impianti finanziati con la presente operazione è utilizzata esclusivamente a servizio di edifici pubblici.

Il sostegno per le reti di distribuzione di energia termica riguarda solo gli investimenti relativi alla parte pubblica della rete. Gli alacciamenti delle singole utenze sono ammissibili solo se si tratta di edifici pubblici o impianti pubblici.

MISURA M08 – Investimenti nello sviluppo delle aree forestali e nel miglioramento della redditività delle foreste (articoli da 21 a 26)

La misura persegue gli obiettivi individuati nella strategia forestale dell’UE [...] e in particolare:

- sostiene le comunità rurali e crea condizioni di maggiore sicurezza per quelle urbane, tramite le operazioni connesse alla prevenzione dei danni da incendio o altri fattori perturbativi ed al ripristino del potenziale forestale danneggiato;
- promuove la competitività e la sostenibilità delle attività legate al settore forestale [...], nonché dell’utilizzo della energia derivante dalle biomasse di origine forestale, sostenendo gli investmenti in tecnologie forestali;
- favorisce l’adattamento delle foreste ai cambiamenti climatici e migliora la resilienza degli ecosistemi forestali [...], ma consente altresì di attenuare i cambiamenti stessi favorendo la migliore valorizzazione delle risorse forestali per il sequestro del carbonio [...] e promuovendo contestualmente la valorizzazione energetica della frazione di biomassa derivata meno interessante per altri usi;
- migliora i servizi eco sistemici svolti dalle foreste, proprio perché stimola e crea favorevoli condizioni economiche per attivare (o meglio ri-attivare) la gestione delle aree forestali liguri [...];
- incentiva il ricorso alla pianificazione della gestione delle foreste, quale strumento di ausilio alle imprese per ottimizzare, nel tempo e nello spazio, gli interventi gestionali in un ottica di sostenibilità.

La misura sostiene investimenti a carattere strutturale (sul bosco e per le imprese) e infrastrutturale, finalizzati a valorizzare pienamente il carattere multifunzionale delle foreste, ossia la loro capacità di fornire contemporaneamente beni e servizi e conseguentemente produrre valore economico e positive ricadute per l’ambiente e la società.

SOTTOMISURA M08.06 INVESTIMENTI IN TECNOLOGIE FORESTALI, TRASFORMAZIONE, MOVIMENTAZIONE E COMMERCIALIZZAZIONE DEI PRODOTTI DELLE FORESTE

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
</table>
| L’operazione persegue due obiettivi principali:
1. incrementare il valore aggiunto dei prodotti forestali attraverso l’organizzazione e l’innovazione delle relative filiere. Sono pertanto previsti investimenti in macchine, attrezzature, strutture e infrastrutture per la raccolta, stoccaggio, assortimentazione, prima trasformazione e commercializzazione dei prodotti delle filiere forestali, ivi compresi i prodotti forestali non legnosi. Gli investimenti connessi all’uso del legno come materia prima o come fonte di energia sono limitati all’insieme delle attività che precedono la trasformazione industriale dei prodotti [...].
2. ottenere una adeguata valorizzazione economica dei soprasuoli forestali; il sostegno è in questo caso relativo ad interventi selvicolturali di tipo straordinario (una tantum) volti alla produzione di assortimenti legnosi più remunerativi e alla realizzazione o adeguamento di idonee piste forestali | •Soggetti privati proprietari, detentori o gestori di aree forestali
• Comuni
• PMI operanti nel settore forestale |
trattorabili (ossia tracciati a fondo naturale, ordinariamente senza massicciata) interne all’azienda forestale, che consentono di innalzare il valore di macchiatico dei prodotti favorendo l’utilizzo di mezzi che diminuiscono i costi di esbosco). Gli investimenti diretti ad accrescere il valore economico della foresta sono motivati in relazione ai previsti miglioramenti delle foreste in una o più aziende.

Gli investimenti funzionali alla valorizzazione energetica delle biomasse forestali, dovranno essere limitati ad impianti di potenza non superiore a 1 MW complessivo.

MISURA M09 – Costituzione di associazioni e organizzazioni di produttori (Art. 27)

La misura 9, attuata in Regione Liguria con esclusivo riferimento al settore forestale, persegue l’obiettivo di favorire la costituzione di gruppi di produttori nel settore al fine di migliorare la loro posizione negoziale nelle filiere dei prodotti forestali e la loro interazione con le imprese impegnate in altre fasi delle filiere. Inoltre realizza uno sviluppo territoriale equilibrato delle economie e comunità rurali, compresa la creazione e il mantenimento di posti di lavoro, e una più efficace gestione delle aree forestali, funzionale alla gestione sostenibile delle risorse naturali e all’azione per il clima.

SOTTOMISURA M09.01 COSTITUZIONE DI ASSOCIAZIONI E ORGANIZZAZIONI DI PRODUTTORI NEI SETTORI AGRICOLO E FORESTALE

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
</table>
| Le finalità cui devono tendere i gruppi di produttori oggetto dell’operazione sono le seguenti:
- Adeguare la produzione dei soci membri del gruppo alle esigenze del mercato (es. materiale certificato, materiale legnoso a “filiera corta”);
- Commercializzare in comune i prodotti, incluso il condizionamento per la vendita, la vendita centralizzata e la fornitura a grossisti (es. fornitura di cippato a centrali di cogenerazione [...]);
- Definire norme comuni in materia di informazioni sulla produzione, con particolare riguardo ai prelievi forestali e alla disponibilità di prodotti;
Svolgere altre attività che possono essere di supporto ai soci produttori come lo sviluppo delle competenze imprenditoriali e commerciali e l’organizzazione di processi innovativi. |
| La misura è destinata a gruppi di produttori, ufficialmente riconosciuti dalla Regione sulla base di un piano aziendale; i produttori devono essere PMI. Non possono essere concessi aiuti a:
a) organizzazioni, enti o organismi di produzione, come imprese o cooperative, il cui obiettivo sia la gestione di una o più aziende forestali e che quindi costituiscono di fatto singoli produttori;
associazioni i cui soci non siano produttori forestali. |

MISURA M16 – Cooperazione (Art. 35)

La misura 16 ha l’obiettivo di incentivare rapporti di cooperazione tra almeno due soggetti diversi (imprese, enti pubblici, istituti di ricerca, professionisti, ONG, associazioni di produttori, cooperative, organizzazioni interprofessionali, eccetera) per:

- la costituzione e la gestione dei Gruppi operativi del Partenariato europeo per l’innovazione (PEI);
- la realizzazione di progetti, approcci o attività comuni attraverso la costituzione di specifici partenariati.

Si tratta pertanto di una misura di tipo metodologico, che ha come obiettivo quello di favorire la cooperazione e le aggregazioni per introdurre, sviluppare e diffondere le innovazioni e le conoscenze nel settore agricolo, forestale e nelle zone rurali, promuovere la filiera corta, i mercati locali e l’agricoltura sociale e attuare progetti agroambientali.

SOTTOMISURA M16.02 SUPPORTO PER PROGETTI PILOTA E PER LO SVILUPPO DI NUOVI PRODOTTI, PRATICHE, PROCESSI E TECNOLOGIE

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>L’operazione finanzia la realizzazione di progetti di cooperazione, finalizzati all’introduzione di innovazioni per la riduzione dei costi produttivi e dei consumi energetici e idrici, alla sostenibilità ambientale, alla mitigazione e adattamento dei cambiamenti climatici e orientati al miglioramento della sostenibilità economica e</td>
<td>I beneficiari, denominato gruppo di cooperazione, sono forme di aggregazione (es. Associazioni temporanee, reti</td>
</tr>
</tbody>
</table>
ambientale della filiera. Rientrano nell’ambito dei progetti di cooperazione:

- azioni pilota, di durata non superiore a 24 mesi, per collaudare, validare (test) e dimostrare un’innovazione. Tale intervento consente di verificare e collaudare l’applicabilità delle innovazioni già messe a punto dalla ricerca o in fase sperimentale, ma ancora da contestualizzare nelle realtà produttive, territoriali e ambientali liguri;
- azioni di sviluppo precompetitivo (sperimentale), di durata non superiore a 5 anni, di nuovi processi, pratiche, tecnologie, prodotti o servizi nuovi o migliorati, prima dell’immissione sul mercato.

Sono finanziabili progetti relativi all’introduzione e sviluppo delle seguenti innovazioni prioritarie:

- strategie di coltivazione, di allevamento e di gestione forestale, compreso l’utilizzo di fonti rinnovabili e la meccanizzazione conservativa e di precisione;
- strategie di difesa, di controllo e di lotta fitosanitaria, compreso il diserbo e la disinfezione del terreno, individuazione di nuovi principi attivi e estensione etichetta di prodotti fitosanitari;
- strategie di sistemi e processi organizzativi, logistici, distributivi e commerciali;
- strategie di trasformazione, di conservazione, di condizionamento e confezionamento, degli standard quantitativi e qualitativi delle produzioni e dell’alimentazione e del benessere animale.

SOTTOMISURA M16.08 SOSTEGNO PER LA STESURA DI PIANI FORESTALI DI SECONDO LIVELLO

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
</table>
| L’operazione incentiva e promuove l’attuazione di iniziative finalizzate ad una pianificazione che indirizzi il corretto e redditizio utilizzo del territorio forestale, secondo le indicazioni della programmazione nazionale e regionale di settore. In tal senso il sostegno è concesso per l’elaborazione di piani forestali di secondo livello, a scala comprensoriale, definiti appunto piani forestali territoriali di indirizzo (PFTI). Sono ammissibili i seguenti interventi:
 - indagini e studi (es. valutazione delle caratteristiche forestali e infrastrutturali del territorio, analisi costi/benefici, analisi del tessuto socio-economico e di filiera);
 - costituzione e organizzazione della forma di cooperazione più idonea;
 - attuazione di azioni di animazione territoriale, anche funzionali a consentire l’adeguato approccio partecipativo per l’elaborazione dei piani;
 - elaborazione dei piani forestali previsti;
 - consulenza e assistenza (es. tecnica, giuridica, normativa);
 - attività di informazione per la divulgazione e la capitalizzazione dei risultati. |
| I beneficiari (Gruppi di cooperazione) sono forme di aggregazione, in particolare:
 - imprese forestali e agricole, singole e associate, operanti in Liguria;
 - Enti pubblici;
 - gestori del territorio: Enti pubblici e soggetti privati (enti territoriali, Comuni, enti parco, enti gestori dei siti della Rete Natura 2000, etc.), titolari della gestione delle superfici interessate;
 - PMI che operano nelle zone rurali e/o coinvolte nelle filiere per la gestione e valorizzazione della risorsa forestale e dei suoi prodotti (legnosi, non |
legnosi, servizi turistici ed ecosistemici);
• soggetti locali che operano nell’ambito dei servizi alla popolazione;
• prestatori di servizi di cui alla misura 1 e 2 per le attività di consulenza e formazione;
• altri soggetti o enti di diritto privato e pubblico, che possono ricevere un vantaggio dall’iniziativa, definire un completamento delle filiere o comunque funzionali e necessari all’attuazione del progetto.

Per quanto riguarda gli aspetti ambientali legati all’installazione di impianti a biomassa si rimanda alla relativa scheda dell’Allegato 2 al presente documento.

6.3.2.2. Il solare termico

Rispetto a quanto previsto dal PEAR 2003 (obiettivo di 40 MWT) il settore del **solare termico** non ha visto in Liguria una significativa evoluzione, nonostante le grandi potenzialità, a causa della mancanza di cultura, formazione ed investimenti in questo settore, oltre ad ostacoli legati all’inserimento di questo tipo di impianti in edifici di pregio. Al 2014 non sono disponibili dati certi sull’installato, in quanto gli impianti di piccola taglia non necessitano di procedure amministrative particolari che ne consentano il monitoraggio: in base alle informazioni disponibili derivanti da finanziamenti regionali e dalle detrazioni fiscali del 55% (Rep55% - Fonte ENEA), l’installato al 2012 può essere stimato attorno agli 11 MWT.

La stima della produzione energetica potenziale ottenibile da solare termico entro il 2020 non è immediata anche perché non è disponibile attraverso le banche dati elaborate dagli uffici comunali e provinciali l’informazione in merito alla centralizzazione o meno della produzione di acqua calda presso i condomini, che consentirebbe di valutare un bacino significativo di utenze per questa tecnologia.

Tabella 65- Dettaglio del tipo di investimento e dei beneficiari relativi agli elementi del PSR 2014-2020 correlati alla diffusione di impianti a biomassa
La definizione dell’obiettivo per la fonte solare termica è stata pertanto effettuata a partire da quanto riportato nello studio condotto da ERSE ai fini del Decreto Burden Sharing ("Burden Sharing regionale dell’obiettivo di sviluppo delle fonti rinnovabili e Piano d’Azione Nazionale per l’Energia Rinnovabile"), tenendo conto della modesta applicazione di questa tecnologia sul territorio regionale. Lo studio ERSE attribuisce alla Liguria un potenziale di 40 ktep, ottenuto ipotizzando alcuni fattori di applicazione distinti per edifici monofamiliari e condomini nuovi o ristrutturati con ACS centralizzata. Vista la scarsa penetrazione del solare termico sul mercato ligure e la scarsa disponibilità di dati certi sull’installato, la Regione Liguria assume cautelativamente un obiettivo di 6 ktep al 2020, che corrisponde ad un parco installato di circa 100 MWh.

Tale obiettivo potrà essere ricalibrato nelle fasi successive di implementazione e monitoraggio del Piano, alla luce della disponibilità di nuove fonti di informazione. In tal senso la banca dati regionale dei certificati
energetici, la banca dati sugli impianti termici e gli esiti del monitoraggio del Burden Sharing a cura del GSE potranno fornire nuovi dati al fine di aggiornare il quadro conoscitivo in merito a questa tecnologia.

Azioni per lo sviluppo delle fonti rinnovabili termiche: solare termico

La Regione Liguria promuoverà la diffusione di questa tecnologia attraverso azioni di formazione ed informazione in merito alle norme ed agli incentivi vigenti (si veda cap. 6.4). In particolare, si ricorda l’attuale obbligo (per nuove costruzioni o edifici sottoposti a ristrutturazioni importanti) di installare impianti solari termici in grado di coprire almeno il 50% dei fabbisogni di acqua calda sanitaria (ACS). Gli incentivi nazionali (Conto Termico 2.0 e detrazioni fiscali IRPEF) rimangono inoltre di primaria importanza anche se il quadro normativo che regolamenta il settore è come noto in forte evoluzione ed è difficile prevederne l’impatto.

La Regione intende sostenere, anche attraverso specifici finanziamenti, questa tecnologia che ha ottime opportunità di attuazione sul territorio regionale, viste le condizioni di esposizione alla fonte solare estremamente favorevoli, e significative sinergie con il tema dell’efficienza energetica. In tal senso la Regione, anche attraverso le risorse derivanti dalla Programazione POR FESR 2014-2020 (Tabella 66 e Tabella 67), intende attivare misure specifiche di finanziamento per la realizzazione di questa tipologia di impianti in combinazione con azioni volte all’incremento dell’efficienza energetica, rivolte sia agli enti pubblici che alle PMI. Parallelamente il PSR 2014-2020 prevede (Tabella 68 e Tabella 69), tra gli investimenti ammissibili del programma, lo sfruttamento delle fonti energetiche rinnovabili, tra cui il solare termico, a favore di aziende agricole.

Verrà inoltre valutata nei prossimi anni la possibilità di azioni normative sulle prestazioni energetiche degli edifici che contengano specifiche raccomandazioni per questa tipologia di impianti.

<table>
<thead>
<tr>
<th>POR-FESR 2014-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asse</td>
</tr>
<tr>
<td>4 ENERGIA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6 CITTÀ</td>
</tr>
</tbody>
</table>

Tabella 66 - Elementi del POR FESR 2014-2020 correlati alla diffusione del solare termico

<table>
<thead>
<tr>
<th>POR-FESR 2014-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSE 4 - ENERGIA</td>
</tr>
<tr>
<td>O.T. 04 – Sostenere la transizione verso un’economia a basse emissioni di carbonio in tutti i settori</td>
</tr>
<tr>
<td>Priorità di investimento</td>
</tr>
<tr>
<td>4b - Promuovere</td>
</tr>
</tbody>
</table>

#
ASSE 6 - CITTÀ

O.T. 04 – Sostenere la transizione verso un’economia a basse emissioni di carbonio in tutti i settori

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>4c - Sostenere l’efficienza energetica, la gestione intelligente dell’energia e l’uso dell’energia rinnovabile nelle infrastrutture pubbliche, compresi gli edifici pubblici, e nel settore dell’edilizia abitativa.</td>
<td>OS4.1 - Riduzione dei consumi energetici negli edifici e nelle strutture pubbliche o ad uso pubblico, residenziali e non residenziali e integrazione di fonti rinnovabili (Rif. RA 4.1 AP)</td>
<td>Promozione dell’eco-efficienza e riduzione di consumi di energia primaria negli edifici e strutture pubbliche: interventi di ristrutturazione di singoli edifici o complessi di edifici, installazione di sistemi intelligenti di telecontrollo, regolazione, gestione, monitoraggio e ottimizzazione dei consumi energetici (smart buildings) e delle emissioni inquinanti anche attraverso l’utilizzo di mix tecnologici (rif. Azione 4.1.1 AP)</td>
<td>EE.PP., Aziende sanitarie, Enti e Aziende ospedalieri liguri</td>
</tr>
<tr>
<td>OS6.2 - Riduzione dei consumi energetici negli edifici e nelle strutture pubbliche o ad uso pubblico, residenziali e non residenziali e integrazione di fonti rinnovabili (Rif. RA 4.1 AP)</td>
<td>•Promozione dell’eco-efficienza e riduzione di consumi di energia primaria negli edifici e strutture pubbliche (Rif. Azione 4.1.1 AP) •Adozione di soluzioni tecnologiche per la riduzione dei consumi energetici delle reti di illuminazione pubblica, promuovendo installazioni di sistemi automatici di regolazione (sensori di luminosità, sistemi di telecontrollo e di telegestione energetica della rete) (Rif. Azione 4.1.3 AP)</td>
<td>Città di Savona, Imperia, Sanremo</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 67 - Dettaglio delle priorità di investimento, degli obiettivi specifici, delle azioni e dei beneficiari relativi agli elementi del POR FESR 2014-2020 correlati alla diffusione del solare termico

PSR 2014-2020

<table>
<thead>
<tr>
<th>Misura</th>
<th>Sottomisure</th>
</tr>
</thead>
<tbody>
<tr>
<td>M04 Investimenti in immobilizzazioni materiali (Art. 17)</td>
<td>04.01 supporto agli investimenti nelle aziende agricole 04.02 supporto agli investimenti nella trasformazione, commercializzazione e sviluppo dei prodotti agricoli</td>
</tr>
</tbody>
</table>

Tabella 68 - Elementi del PSR 2014-2020 correlati alla diffusione del solare termico

PSR 2014-2020
MISURA M04 - Investimenti in immobilizzazioni materiali (Art. 17)

La misura persegue principalmente l’obiettivo di stimolare la competitività del settore agricolo e forestale. Essa nel suo complesso ha anche un effetto indiretto sulla realizzazione di uno sviluppo territoriale equilibrato delle economie e comunità rurali, compresi la creazione e il mantenimento di posti di lavoro.

La misura concorre ai seguenti obiettivi trasversali:
- **Innovazione:** Gli interventi previsti concorrono a migliorare l’efficienza e la competitività delle filiere produttive e la qualità dei prodotti agroalimentari.
- **Ambiente:** Gli investimenti produttivi di cui alle sottomisure 04.01, 04.02 e 04.03 sostengono anche il miglioramento delle prestazioni ambientali delle aziende attraverso risparmio idrico, efficienza energetica, riduzione di emissioni inquinanti, difesa del suolo dall’erosione e riutilizzo di scarti e sottoprodotti.

SOTTOMISURA M4.01 SUPPORTO AGLI INVESTIMENTI NELLE AZIENDE AGRICOLE

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il tipo di operazione persegue l’obiettivo di:</td>
<td>Sono beneficiari del sostegno dell’operazione le imprese agricole singole e associate.</td>
</tr>
<tr>
<td>• migliorare l’efficienza economica aziendale;</td>
<td></td>
</tr>
<tr>
<td>• accrescere il valore aggiunto aziendale tramite la trasformazione in azienda e la vendita diretta in azienda dei prodotti aziendali;</td>
<td></td>
</tr>
<tr>
<td>• migliorare le prestazioni ambientali aziendali con particolare riferimento a risparmio idrico, energetico, riduzione delle emissioni inquinanti, difesa del suolo dall’erosione;</td>
<td></td>
</tr>
<tr>
<td>• miglioramento delle condizioni di sicurezza del lavoro.</td>
<td></td>
</tr>
</tbody>
</table>

Sono ammissibili le spese relative ad investimenti finalizzati alla produzione di energia elettrica e termica da destinarsi esclusivamente all’utilizzo aziendale, attraverso lo sfruttamento di fonti energetiche rinnovabili (solare, eolico) e/o di biomasse solo derivanti da sottoprodotto e/o residui, di origine prevalentemente aziendale, derivanti dalla lavorazione di prodotti agricoli e forestali.

I suddetti impianti devono essere commisurati alle esigenze energetiche, su base annuale, relative ai cicli produttivi agricoli dell’azienda agricola interessata. È escluso qualsiasi sostegno alla produzione di biocombustibili derivanti da produzione agricola dedicata.

La produzione di energia è limitata ai combustibili derivanti da scarti aziendali o di origine locale, al fine di minimizzare le necessità di trasporto, e derivanti altresì da una gestione attiva della foresta, in modo da favorire l’avvio di filiere corte. Gli impianti funzionanti a biomasse dovranno sfruttare scarti di produzione agricola, agro-industriale o forestale locale, minimizzando le necessità di trasporto. Con il termine “locale” si intende una distanza di non più di 70 km tra il luogo di produzione e il luogo di utilizzo.

Gli investimenti in impianti per la produzione di energia, il cui principale obiettivo è la produzione di energia elettrica dalle biomasse sono ammissibili al sostegno solo se è utilizzata una percentuale di energia termica pari almeno al 40%, ai sensi dell’articolo 13 del regolamento di esecuzione (UE) n. 807/2014 della Commissione.

SOTTOMISURA M04.02 SUPPORTO AGLI INVESTIMENTI NELLA TRASFORMAZIONE, COMMERCIALIZZAZIONE E SVILUPPO DEI PRODOTTI AGRICOLI

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il tipo di operazione persegue l’obiettivo di:</td>
<td>Sono beneficiarie del sostegno dell’operazione le imprese che trasformano e commercializzano i prodotti agricoli di cui all’Allegato I del Trattato sul Funzionamento dell’Unione Europea (TFUE).</td>
</tr>
<tr>
<td>• migliorare l’efficienza della filiera, con particolare riferimento alla creazione o consolidamento di sbocchi di mercato stabili e duraturi per i produttori del prodotto di base;</td>
<td></td>
</tr>
<tr>
<td>• migliorare l’efficienza economica aziendale;</td>
<td></td>
</tr>
<tr>
<td>• migliorare le prestazioni ambientali aziendali con particolare riferimento a risparmio idrico, energetico, riduzione delle emissioni inquinanti, riutilizzo degli scarti e dei sottoprodotti;</td>
<td></td>
</tr>
<tr>
<td>• migliorare le condizioni di sicurezza del lavoro;</td>
<td></td>
</tr>
<tr>
<td>• favorire l’adesione a sistemi di qualità certificata in base a norme europee, nazionali e</td>
<td></td>
</tr>
</tbody>
</table>
Tabella 69 - Dettaglio del tipo di investimento e dei beneficiari relativi agli elementi del PSR 2014-2020 correlati alla diffusione del solare termico

Per quanto riguarda gli aspetti ambientali legati all’installazione di impianti solari termici si rimanda alla relativa scheda dell’Allegato 2 al presente documento.

6.3.2.3. Le pompe di calore

La pompa di calore è un macchina termica che, al pari di un comune frigorifero, preleva calore da un ambiente freddo per trasferirlo e cederlo ad un altro ambiente più caldo; al contrario del frigorifero però la pompa di calore non raffredda il vano interno smaltendo il calore nell’ambiente esterno, bensì opera in direzione opposta, prelevando il calore dall’esterno per trasferirlo e cederlo all’ambiente interno, riscaldandolo. In quanto opposto al comportamento spontaneo del calore, questo processo richiede un apporto energetico dall’esterno, generalmente sotto forma di energia elettrica consumata dalla macchina per produrre il servizio di riscaldamento.

Tenendo presente che, dal punto di vista tecnico, una pompa di calore non è diversa da una macchina frigorifera fatta operare in verso contrario, l’evoluzione del mercato ha portato alla diffusione in Italia e nel sud Europa di sistemi di condizionamento d’aria di tipo “reversibile”, in grado cioè di fornire ambedue i servizi: raffrescamento in estate e riscaldamento in inverno. Pertanto, nel campo del condizionamento dell’aria, il termine “pompa di calore” è comunemente associato ad un condizionatore d’aria dotato di valvola reversibile, che cambia la direzione di scorrimento del fluido refrigerante e permette così sia di erogare che di estrarre calore da un locale di un edificio.

Conformemente alla Direttiva Europea 2009/28/CE, il relativo decreto nazionale di recepimento (D Lgs n. 28/2011) riconosce come energia rinnovabile la quota parte di energia “catturata da pompe di calore [...] a condizione che il rendimento finale di energia ecceda di almeno il 5% l’apporto energetico primario necessario per far funzionare le pompe di calore”.

Solo una quota di energia prodotta dalle pompe di calore per il riscaldamento invernale può essere considerata rinnovabile. Per definire con maggiore chiarezza e precisione i criteri e le procedure di calcolo da adottare per quantificare il contributo da fonte rinnovabile prodotto dalle pompe di calore, in data 1 marzo 2013 la Commissione Europea ha emanato le linee guida che definiscono “gli orientamenti relativi al calcolo da parte degli Stati membri della quota di energia da fonti rinnovabili prodotta a partire da pompe di calore [...] a norma dell’articolo 5 della Direttiva 2009/28/CE” e che sono alla base delle quantificazioni usate nel presente lavoro per determinare lo scenario al 2020 di sviluppo regionale.

È opportuno evidenziare alcuni vantaggi e svantaggi legati allo sfruttamento di tale tecnologia.

Le pompe di calore sono alimentate da energia elettrica, il cui attuale (2014) mix di generazione a livello nazionale è ancora basato sulle fonti fossili e presenta rendimenti dell’ordine del 46%: ciò determina una sensibile riduzione dei benefici ambientali prodotti dall’utilizzo di questa tecnologia. Viceversa però le pompe di calore erogano molta più energia di quanta non ne consumino, contribuendo al raggiungimento degli obiettivi nazionali sulle fonti rinnovabili; inoltre il mix di generazione elettrica a livello nazionale sarà
sempre più orientato verso le fonti rinnovabili, pertanto i vantaggi ambientali prodotti dalle pompe di calore sono destinati a crescere nel tempo.

Tra i benefici delle pompe di calore vanno inoltre evidenziati gli effetti di miglioramento della qualità dell’aria in ambito urbano (le pompe di calore non producono emissioni inquinanti a livello locale) e l’assenza di specifiche prescrizioni antincendio (assenza di fiamma, mancata necessità di canna fumaria).

Per contro tali sistemi, con costi sensibilmente superiori rispetto a quelli delle caldaie, non sempre possono essere integrati in impianti di riscaldamento tradizionali a termosifoni (in quanto forniscono calore a bassa temperatura) e possono operare solo in condizioni di salto termico limitato.

Le pompe di calore costituiscono una tecnologia che ben si presta all’integrazione in reti intelligenti: integrandole in un programma di Demand Side Management (DSM), con contatore e tariffa dedicata che remuneri il servizio, esse possono fornire un contributo importante al bilanciamento della rete elettrica nazionale e all'integrazione delle rinnovabili non programmabili (sole e vento).

Le pompe di calore trovano la maggiore diffusione in Italia nel settore civile terziario, per via della crescente domanda di raffrescamento estivo che favorisce il ricorso ad una pompa di calore, utilizzata di conseguenza anche per il riscaldamento invernale invertendone il ciclo (macchina reversibile). Secondo CO.AER (Associazione dei costruttori di apparecchiature ed impianti aeralucili) nel 2011 in Italia sono stati installati complessivamente circa 102.000 MWe di pompe di calore reversibili, di cui 1400 MWe in Liguria.

Il bilancio energetico del 2011 della Liguria (Tabella 15) evidenzia che i consumi, legati prevalentemente al riscaldamento e produzione di acqua calda sanitaria, di derivati del petrolio (gasolio ed olio combustibile) nel settore civile ammontano a circa 120 ktep/anno: la sostituzione di questi impianti, obsoleti, costosi e poco efficienti, con pompe di calore consentirebbe di ridurre le emissioni inquinanti in atmosfera (migliorando sensibilmente la qualità dell’aria a livello locale) e di ridurre i relativi elevati costi di gestione.

Un importante ambito di sviluppo per questa tecnologia riguarda l’utilizzo di acqua di mare come sorgente esterna. L’efficienza di una pompa di calore cresce al diminuire del salto di temperatura tra sorgente fredda e sorgente calda; in Liguria l’aria esterna della fascia litoranea è caratterizzata da temperature invernali con minimi intorno ai 0°C e medie di circa 10°C. Un pompa di calore che utilizzzi aria esterna come sorgente fredda perde quindi in efficienza proprio quando la temperatura esterna è minore e l’energia necessaria per il riscaldamento è massima. L’acqua di mare è caratterizzata da temperature pressoché costanti durante l’inverno, di circa 12±15°C, per cui l’uso di questa fonte come sorgente esterna consente efficienze notevolmente superiori e tali da dimezzare quasi i consumi energetici a parità di servizio reso. Ciò comporta vantaggi sia dal punto dei viewi dei consumi, ma anche della quota di energia rinnovabile attribuibile a questa tecnologia, che cresce con l’efficienza della macchina. La forte concentrazione antropica che si registra in Liguria lungo la fascia costiera, favorisce l’uso di climatizzazione mediante acqua di mare. E’ tuttavia opportuno evidenziare come lo sfruttamento di questa sorgente fredda richieda la realizzazione di una rete di distribuzione (teleriscaldamento/teleraffreddamento) e di opere a mare dai costi significativi e tali da rendere questa opzione profittevole solo in aree ad alta densità antropica, con elevata domanda.

52 17 Co.Aer - Associazione Costruttori Apparecchiature ed Impianti Aeralucili, ora ASSOCLIMA - Costruttori Sistemi di Climatizzazione.

53 Ipotizzando la distribuzione regionale di cui allo studio di Cresme Ricerche Spa “Il mercato delle costruzioni e le prospettive degli impianti termici e di condizionamento”
specifica di energia (MWh/km²/anno) e per cicli di utilizzo annuali con domanda quindi anche di raffrescamento estivo. Infatti da un parte l’alta domanda specifica consente di contenere l’estensione della rete ed i relativi costi, dall’altra l’uso su un ciclo annuale anziché stagionale consente più rapidi ritorni economici e quindi tempi di ammortamento più brevi. È ragionevole ipotizzare che tale tecnologia possa trovare applicazione in ambiti con forte concentrazione di terziario, caratterizzato generalmente da domanda sia di riscaldamento invernale che di raffrescamento estivo, e/o presso utenze singole fortemente energivore come grandi centri commerciali, grosse strutture alberghiere ed ipermercati situati in prossimità della costa.

Ancora una volta, gli importanti investimenti necessari per la realizzazione delle opere e le peculiarità di tale tecnologia richiedono il coinvolgimento di ESCo specializzate nella costruzione e gestione di grandi reti di distribuzione. Come alternativa gli utenti potrebbero consorziarsi per autofinanziare la realizzazione delle opere demandando la sola gestione e manutenzione degli impianti ad aziende terze. Un processo in tal senso è in fase di studio nel quartiere di S. Benigno a Genova, in cui sono presenti grossi condomini ad uso prevalentemente terziario. Un ulteriore ambito di sviluppo riguarda le cosiddette pompe di calore elioassistite, ossia pompe di calore per il riscaldamento invernale la cui sorgente fredda è costituita da un liquido pre-riscaldato mediante collettori solari termici. Questa operazione innalza la temperatura della sorgente fredda in modo da ridurre il salto di temperatura con la sorgente calda, con importanti vantaggi in termini di efficienza. L’Università degli Studi di Genova ha da tempo avviato una propria linea di ricerca su tale tecnologia che attualmente (2014) è in fase prototipale avanzata.

Azioni per lo sviluppo delle fonti rinnovabili termiche: pompe di calore

La Regione Liguria nei prossimi anni intende favorire la diffusione di questo tipo di impianti valutando la possibilità di intervenire su aspetti normativi e regolatori finalizzati all’innovazione tecnologica e all’incremento dell’efficienza energetica del parco impiantistico, con importanti ricadute positive sulla bolletta energetica dell’utente finale. La Regione offrirà inoltre sostegno alla realizzazione di interventi di impiego delle pompe di calore, anche attraverso risorse della Programmazione POR FESR 2014-2020 (Tabella 70 e Tabella 71).

Parallelamente questa tecnologia verrà promossa attraverso azioni di formazione ed informazione in merito alle norme ed agli incentivi vigenti come il Conto termico 2.0 e le detrazioni fiscali IRPEF (si veda cap. 6.4).

Inoltre, in attuazione del Dlgs n. 102/2014 (successivamente integrato dal D Lgs n.141/2016), l’Autorità per l’Energia Elettrica e il Gas (AEEG oggi AEEGI) ha emesso la deliberazione n. 582/2015/R/EEl del 2 Dicembre 2015, finalizzata alla riforma delle tariffe elettriche per tutte le tipologie di consumatore; la nuova struttura tariffaria non progressiva, che entrerà a regime nel 2018 per tutti i clienti domestici, è già attiva per tutti i soggetti che abbiano installato pompe di calore che in precedenza usufruivano della tariffa agevolata D1.

<table>
<thead>
<tr>
<th>POR-FESR 2014-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asse</td>
</tr>
<tr>
<td>4 ENERGIA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Priorità di investimento</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>6 CITTÀ</td>
</tr>
</tbody>
</table>

Tabella 70 - Elementi del POR FESR 2014-2020 correlati alla diffusione delle pompe di calore

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSE 4 - ENERGIA</td>
<td>O.T. 04 – Sostenere la transizione verso un'economia a basse emissioni di carbonio in tutti i settori</td>
<td>OS4.2 - Riduzione dei consumi energetici e delle emissioni nelle imprese e integrazione di fonti rinnovabili (Rif. RA 4.2 AP)</td>
<td>PMI in forma singola o associata.</td>
</tr>
<tr>
<td>Priorità di investimento</td>
<td>Obiettivo Specifico</td>
<td>Azioni</td>
<td>Beneficiari</td>
</tr>
<tr>
<td>4c - Sostenere l'efficienza energetica, la gestione intelligente dell'energia e l'uso dell'energia rinnovabile nelle infrastrutture pubbliche, compresi gli edifici pubblici, e nel settore dell'edilizia abitativa.</td>
<td>OS4.1 - Riduzione dei consumi energetici negli edifici e nelle strutture pubbliche o ad uso pubblico, residenziali e non residenziali e integrazione di fonti rinnovabili (Rif. RA 4.1 AP)</td>
<td>EE.PP., Aziende sanitarie, Enti e Aziende ospedalieri liguri</td>
<td></td>
</tr>
</tbody>
</table>

O.T. 04 – Sostenere la transizione verso un'economia a basse emissioni di carbonio in tutti i settori

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSE 6 - CITTÀ</td>
<td>O.T. 04 – Sostenere la transizione verso un'economia a basse emissioni di carbonio in tutti i settori</td>
<td>OS6.2 - Riduzione dei consumi energetici negli edifici e nelle strutture pubbliche o ad uso pubblico, residenziali e non residenziali e integrazione di fonti rinnovabili (Rif. RA 4.1 AP)</td>
<td>Città di Savona, Imperia, Sanremo</td>
</tr>
</tbody>
</table>

#
integrazione di fonti rinnovabili (Rif. RA 4.1 AP) | riduzione dei consumi energetici delle reti di illuminazione pubblica, promuovendo installazioni di sistemi automatici di regolazione (sensori di luminosità, sistemi di telecontrollo e di telegestione energetica della rete) (Rif. Azione 4.1.3 AP)

| Tabella 71 - Dettaglio delle priorità di investimento, degli obiettivi specifici, delle azioni e dei beneficiari relativi agli elementi del POR FESR 2014-2020 correlati alla diffusione delle pompe di calore |

Per quanto riguarda gli aspetti ambientali legati all’installazione di pompe di calore si rimanda alla relativa scheda dell’Allegato 2 al presente documento.

6.4. Le azioni trasversali ai settori dell’efficienza energetica e delle fonti rinnovabili: informazione e formazione

Uno dei maggiori ostacoli che le tecnologie per l’efficienza energetica e le fonti rinnovabili hanno incontrato nella loro diffusione è legato alla mancanza di una cultura consolidata sul corretto uso dell’energia a livello territoriale. Le cause sono in parte di origine storica: le miti condizioni climatiche dell’area mediterranea hanno determinato una scarsa gestione delle risorse energetiche per il riscaldamento invernale, che non ha mai costituito un fattore essenziale per la sopravvivenza, contrariamente a quanto accadeva nei paesi del nord Europa, in cui la disponibilità e la buona gestione del combustibile (legna) erano determinanti ai fini del superamento della stagione fredda. Un secondo motivo va individuato nella scarsa propensione degli operatori di settore e dei professionisti all’innovazione tecnologica, oltre che ad una mancata attenzione agli aspetti energetici da parte dei costruttori per le strutture edilizie di periodi storici (a partire dagli anni ’90) in cui una certa normativa di settore era comunque già presente. Sul fronte delle politiche nazionali peraltro la spinta all’innovazione tecnologica è piuttosto recente e pertanto non è riuscita a determinare quel cambio di passo richiesto oggi dal quadro normativo, in particolare su un territorio come quello ligure caratterizzato da un’età media della popolazione piuttosto avanzata, e quindi poco propensa all’innovazione, e da un tessuto produttivo costituito in larga parte da imprese di piccole e medie dimensioni che difficilmente dispongono al loro interno di competenze specifiche in campo energetico. Oltre all’evoluzione del quadro normativo, anche l’attuale fase di crisi economica contribuisce a portare la questione energetica in primo piano, nel settore civile come in quello della piccola e media industria, ambiti nei quali il consulente e l’operatore di settore rivestono un ruolo essenziale nel proporre innovazioni tecnologiche e nuove soluzioni volte all’incremento dell’efficienza energetica ed allo sviluppo delle fonti rinnovabili di energia. L’importanza della formazione e aggiornamento degli operatori è ribadita anche dalla normativa europea e nazionale: in particolare la Direttiva 2009/28/CE ed il relativo Decreto attuativo (D Lgs n. 28/2011) prevedono che gli Stati Membri si dotino di appositi percorsi formativi e di certificazione/qualification per gli installatori di impianti a fonte rinnovabile di taglia medio-piccola per i quali non è necessario il coinvolgimento di un progettista. L’installatore in questo caso deve avere quindi competenze adeguate sia sulle tecnologie che sul dimensionamento, al fine di ottimizzare la proposta di soluzioni da sottoporre all’utente finale.

Nel settore civile un ulteriore aspetto rilevante per l’attuazione delle politiche energetiche regionali riguarda l’informazione e la sensibilizzazione degli amministratori di condominio sulle tematiche energetiche. Le difficoltà economiche che molte famiglie si trovano ad affrontare a seguito della crisi rendono sempre più difficile per gli amministratori coinvolgere i propri condomini in interventi rilevanti dal punto di vista energetico, spesso necessari, quali il rifacimento di centrali termiche obsolete o di facciate e
coperture degradate e tanto meno nell’introduzione di sistemi di produzione di energia da fonti rinnovabili. Diventa importante che gli amministratori siano costantemente aggiornati sulle novità legislative e sulle tecnologie ed anche sulle opportunità economiche di natura pubblica (incentivi ed agevolazioni), ma anche privatamente, legate ad esempio all’intervento di ESCo che, investendo capitale proprio ammortabile attraverso il risparmio energetico, sollevino l’utente finale da rischi di impresa.

Azioni di formazione ed informazione

Alla luce di quanto sopra esposto e del fatto che il mercato ligure si è dimostrato fortemente inerziale rispetto agli sviluppi delle politiche nazionali sull’efficienza energetica (si veda Tabella 33) e su alcune fonti rinnovabili (Cap. 6.3), la Regione Liguria metterà in atto una linea di sviluppo trasversale ai due settori specificamente rivolta all’informazione dei cittadini ed alla formazione degli operatori di settore sui temi energetici.

Tra le azioni previste da tale linea di sviluppo si riportano:

- formazione ed aggiornamento degli operatori del settore impiantistico ed edile sulle tecnologie di razionalizzazione energetica e sfruttamento delle fonti rinnovabili anche attraverso il coinvolgimento di scuole edili e strutture di formazione delle associazioni di categoria;
- accordi di collaborazione con gli ordini professionali affinché si facciano promotori di programmi di formazione continua dei propri iscritti sulle tematiche energetiche, a partire dalle metodologie di diagnosi energetica nel settore civile ed industriale, fino ai metodi di ottimizzazione delle scelte progettuali;
- seminari periodici, in collaborazione con le associazioni di categoria, rivolti ad amministratori di condominio ed imprenditori sugli strumenti normativi e finanziari in grado di favorire la razionalizzazione energetica delle strutture di loro competenza;
- accordi di programma con le associazioni di categoria di artigiani, piccole e medie imprese affinché favoriscano la formazione di consorzi in grado di fornire servizi energetici qualificati e completi, dalla realizzazione delle opere fino all’eventuale finanziamento sotto forma di ESCo;
- formazione degli studenti di scuole di diverso ordine e grado, fino all’alta formazione;
- informazione diffusa rivolta ai cittadini anche sui temi dei finanziamenti dedicati al settore e sulle opportunità tecnologiche.

Il tema della formazione in ambito Green Economy era stato individuato dalla Regione Liguria, insieme all’Economia del Mare, come settore su cui era centrato il Piano Giovani approvato con DGR n. 1037 del 7 agosto 2012 (POR FSE 2007-2013). Il Piano si poneva l’obiettivo di facilitare l’inserimento nel mondo del lavoro delle persone di età compresa tra i 16 e i 34 anni e di favorire un’occupazione stabile e di qualità. Le azioni che facevano parte del Piano sono state inserite in un contesto organico che aveva l’ambizione di mettere a sistema le diverse opportunità disponibili a favore dei giovani. L’obiettivo era quello di raggiungere i diversi gruppi di destinatari con interventi mirati e fortemente personalizzati, che integrassero politiche e servizi per la formazione e il lavoro, investissero sull’innovazione e il rafforzamento del tessuto economico e sociale ligure.

I Piani di sviluppo settoriale previsti dal suddetto Piano prevedevano importanti investimenti per favorire l’azione formativa nel settore della Green Economy con particolare riferimento alle filiere del bosco e dell’efficienza energetica per le imprese e negli edifici.

Il Piano Giovani ha rappresentato una buona pratica ai fini della programmazione delle iniziative del Fondo Sociale Europeo per il periodo 2014-2020, tra le quali sono inserite specifiche misure funzionali alla formazione professionale ed al coinvolgimento dei portatori di interesse, per le quali si rimanda alle tabelle seguenti (Tabella 74 e Tabella 75). Anche il PSR 2014-2020 prevede per altro azioni di formazione ed informazione a favore di imprese agricole e forestali (Tabella 72 e Tabella 73).
Un ulteriore importante strumento che la Regione intende promuovere è costituito dal Patto dei Sindaci, attraverso il quale, i Comuni possono favorire sul proprio territorio iniziative di efficienza energetica quali interventi su immobili pubblici, illuminazione pubblica e regolamenti edilizi innovativi, oltre alle fonti rinnovabili di energia. In coerenza con l’approccio bottom-up del Piano per il raggiungimento degli obiettivi regionali di efficienza energetica sarà fondamentale, sia in fase di implementazione che di monitoraggio del Piano, il coordinamento delle strategie regionali con i piani ed i programmi sviluppati su scala territoriale, dal Patto dei Sindaci a Smart City.

Tabella 72 - Elementi del PSR 2014-2020 correlati alla formazione professionale ed al coinvolgimento dei portatori di interesse

PSR 2014-2020

<table>
<thead>
<tr>
<th>Misura</th>
<th>Sottomisure</th>
</tr>
</thead>
<tbody>
<tr>
<td>M01 Trasferimento di conoscenze e azioni di informazione (Art.14)</td>
<td>01.01 azioni di formazione e acquisizione di competenze</td>
</tr>
<tr>
<td></td>
<td>01.02 supporto alle attività dimostrative e azioni di informazione</td>
</tr>
</tbody>
</table>

PSR 2014-2020

MISURA M01 - Trasferimento di conoscenze e azioni di informazione (Art. 14)

La misura sostiene il trasferimento delle conoscenze, delle innovazioni e delle informazioni, tecnico ed economiche, anche tramite la diffusione di buone pratiche, a favore degli imprenditori e degli addetti nei settori dell’agricoltura, dell'alimentazione e della forestazione, dei gestori del territorio e delle PMI operanti nelle aree rurali.

SOTTOMISURA M01.01 - AZIONI DI FORMAZIONE E ACQUISIZIONE DI COMPETENZE

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interventi formativi e di acquisizione di competenze sulle tematiche:</td>
<td></td>
</tr>
<tr>
<td>• conseguimento del requisito di conoscenza e competenza professionale per giovani di nuovo insediamento;</td>
<td></td>
</tr>
<tr>
<td>• conseguimento di qualifiche professionali nel settore forestale;</td>
<td></td>
</tr>
<tr>
<td>• trasferimento delle conoscenze relative ad obblighi ed impegni derivanti da normative;</td>
<td></td>
</tr>
<tr>
<td>• creazione e aggiornamento di figure professionali utili alla multifunzionalità;</td>
<td></td>
</tr>
<tr>
<td>• adozione di strumenti di gestione economico-finanziaria ed organizzativa;</td>
<td></td>
</tr>
<tr>
<td>• organizzazione delle filiere, marketing, commercializzazione e certificazioni, sicurezza alimentare, salute delle piane e degli animali e benessere animale biodiversità;</td>
<td></td>
</tr>
<tr>
<td>• trasferimento di innovazione di tecnologie e sistemi di coltivazione, di allevamento, compresa la prevenzione e la lotta fitosanitaria, la post raccolta, la conservazione, la trasformazione dei prodotti e la gestione sostenibile delle risorse naturali, dell’ambiente, del paesaggio rurale e delle aree forestali;</td>
<td></td>
</tr>
<tr>
<td>• azioni formative, funzionali e collegate ai progetti di cooperazione, di cui alla misura “M16 - Cooperazione (Art. 35)”.</td>
<td></td>
</tr>
<tr>
<td>Due tipi di azioni ammissibili:</td>
<td></td>
</tr>
<tr>
<td>• “attività formativa”: corsi di formazione e di aggiornamento professionale in campo agricolo, alimentare e forestale sulle citate tematiche, coerenti con i fabbisogni ed obiettivi individuati nel PSR, per raggiungere concreti obiettivi formativi per gruppi omogenei di destinatari.</td>
<td></td>
</tr>
<tr>
<td>• “acquisizione di competenze”. Rientrano in questa azione:</td>
<td></td>
</tr>
<tr>
<td>– coaching (tutoraggio): prevede l’attività di affiancamento di un tecnico, da svolgersi nell’azienda dell’utente, mirata all’acquisizione di competenze,</td>
<td></td>
</tr>
</tbody>
</table>

Sono destinatari delle azioni:
- imprenditori agricoli, singoli e associati e loro dipendenti e coadiuvanti familiari;
- titolari di imprese forestali, singoli e associati e loro dipendenti e coadiuvanti familiari;
- gestori del territorio, rappresentati da Comuni, Enti Parco ed enti gestori dei siti della Rete Natura 2000;
- operatori economici, che siano PMI (microimprese, piccole imprese o medie imprese), come definite nella raccomandazione 2003/361/CE della Commissione, operanti in zone rurali.

Sono beneficiari del sostegno dell’operazione i

<table>
<thead>
<tr>
<th>Asse</th>
<th>Obiettivo Tematico</th>
<th>Priorità</th>
<th>Obiettivo Specifico</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OCCUPAZIONE</td>
<td>8 Promuovere un'occupazione sostenibile e di qualità e sostenere la mobilità dei lavoratori.</td>
<td>8i L'accesso all'occupazione per le persone in cerca di lavoro e inattive, compresi i disoccupati di lunga durata e le persone che si trovano ai margini del mercato del lavoro, anche attraverso iniziative locali per l'occupazione e il sostegno alla mobilità professionale</td>
<td>2 Favorire l'inserimento lavorativo e l'occupazione dei disoccupati di lunga durata e dei soggetti con maggiori difficoltà di inserimento lavorativo, nonché il sostegno delle persone a rischio di prestatori di Servizi di trasferimento di conoscenze e informazioni, selezionati mediante una procedura ad evidenza pubblica e aperta.</td>
</tr>
</tbody>
</table>
Tabella 74 - Elementi del POR FSE 2014-2020 correlati alla formazione professionale ed al coinvolgimento dei portatori di interesse

POR-FSE 2014-2020

ASSE 1 - OCCUPAZIONE

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
</table>
| 8i - L’accesso all’occupazione per le persone in cerca di lavoro e inattive, compresi i disoccupati di lunga durata e le persone che si trovano ai margini del mercato del lavoro, anche attraverso iniziative locali per l’occupazione e il sostegno alla mobilità | 2 - Favorire l’insinero lavorativo e l’occupazione dei disoccupati di lunga durata e dei soggetti con maggiori difficoltà di inserimento lavorativo, nonché il sostegno delle persone a rischio di disoccupazione di lunga durata (8.5). | •Misure di politica attiva, con particolare attenzione ai settori che offrono maggiori prospettive di crescita (ad esempio nell’ambito di: green economy, blue economy, servizi alla persona, servizi socio-sanitari, valorizzazione del patrimonio culturale, ICT) – 8.5.1.
•Percorsi di sostegno alla creazione d’impresa e al lavoro autonomo, ivi compreso il trasferimento d’azienda (ricambio generazionale) – 8.5.4,
•Azioni di qualificazione e riqualificazione dei disoccupati di lunga durata fondate su analisi dei dati | Il principale gruppo target delle azioni cofinanziate per il perseguimento dell’Obiettivo specifico 2 della priorità di investimento 8i sono i disoccupati di lunga durata, più diffusi tra gli adulti, senza tuttavia escludere le persone in cerca di lavoro. I principali beneficiari delle azioni cofinanziate per il perseguimento degli Obiettivi specifici della priorità di investimento 8i |
professionale.

fabbisogni professionali e formativi presenti in sistematiche rilevazioni e/o connesse a domande espresse delle imprese – 8.5.5.

sono gli organismi formativi accreditati, i soggetti titolati all’erogazione di servizi per il lavoro, le imprese per gli incentivi occupazionali e i programmi innovativi di organizzazione del lavoro, le rappresentanze di categoria con riferimento alle misure riguardanti la responsabilità sociale d’impresa e, nuovamente, l’organizzazione del lavoro, la Regione Liguria, i suoi enti strumentali e gli enti locali per quanto eventualmente di rispettiva competenza, nonché, ove pertinenti, le istituzioni del sistema educativo.

O.T. 08 – Promuovere un’occupazione sostenibile e di qualità e sostenere la mobilità dei lavoratori

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>8ii - L’integrazione sostenibile nel mercato del lavoro dei giovani (FSE), in particolare quelli che non svolgono attività lavorative, non seguono studi né formazioni, inclusi i giovani a rischio di esclusione sociale e i giovani delle comunità emarginate, anche attraverso l’attuazione della garanzia per i giovani</td>
<td>3 - Aumentare l’occupazione dei giovani (8.1).</td>
<td>•Misure di politica attiva con particolare attenzione ai settori che offrono maggiori prospettive di crescita (prioritariamente nell’ambito di: green economy, blue economy, servizi alla persona, servizi socio-sanitari, valorizzazione del patrimonio culturale, ICT) – 8.1.1, •Percorsi di sostegno (servizi di accompagnamento e/o incentivi) alla creazione d’impresa e al lavoro autonomo, ivi compreso il trasferimento d’azienda (ricambio generazionale) – 8.1.7.</td>
<td>Il target di riferimento delle azioni cofinanziate per il perseguimento dell’Obiettivo specifico della priorità di investimento 8ii è dato dai giovani ivi compresi i NEET (giovani che non lavorano e non sono impegnati in percorsi educativi). In termini di condizione sul MdL (mondo del lavoro), si configurano quali principali gruppi di destinatari, gli inoccupati e gli inattivi. I principali beneficiari delle azioni cofinanziate per il perseguimento dell’Obiettivo specifico della priorità di investimento 8ii sono gli organismi formativi accreditati, i soggetti titolati all’erogazione di servizi per il lavoro, le imprese per gli incentivi occupazionali e i programmi innovativi di organizzazione del lavoro, le rappresentanze di categoria con riferimento alle misure riguardanti la responsabilità sociale d’impresa e,</td>
</tr>
</tbody>
</table>
ASSE 3 - ISTRUZIONE E FORMAZIONE

O.T. 10 – Investire nell’istruzione, nella formazione e nella formazione professionale per le competenze e l’apprendimento permanente

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>10ii- Migliorare la qualità e l’efficacia dell’istruzione superiore e di livello equivalente e l’accesso alla stessa, al fine di aumentare la partecipazione e i tassi di riuscita specie per i gruppi svantaggiati</td>
<td>10 - Innalzamento dei livelli di competenze, di partecipazione e di successo formativo nell’istruzione universitaria e/o equivalente (10.5)</td>
<td>• Potenziamento dei percorsi di ITS(^{54}), rafforzandone l’integrazione con i fabbisogni espressi dal tessuto produttivo (10.5.3), • Interventi per l’internazionalizzazione dei percorsi formativi e per l’attrattività internazionale degli istituti di istruzione universitaria o equivalente, con particolare attenzione alla promozione di corsi di dottorato inseriti in reti nazionali e internazionali, nonché coerenti con le linee strategiche del Piano Nazionale della Ricerca (10.5.6), • Azioni per il rafforzamento dei percorsi di istruzione universitaria o equivalente post-lauream, volte a promuovere il raccordo tra istruzione terziaria, il sistema produttivo, gli istituti di ricerca, con particolare riferimento ai dottorati in collaborazione con le imprese e/o enti di ricerca in ambiti scientifici coerenti con le linee strategiche del PNR e della Smart specialisation regionale (10.5.12).</td>
<td>I principali gruppi target delle azioni cofinanziate per il perseguimento dell’Obiettivo specifico della priorità di investimento 10ii sono: i giovani e gli adulti. In termini di condizione sul Mdl, si configurano quali principali gruppi di destinatari gli inoccupati, i disoccupati e gli occupati in possesso di un diploma di insegnamento secondario superiore e/o di un diploma di istruzione terziaria. I principali beneficiari delle azioni cofinanziate per il perseguimento degli Obiettivi specifici della priorità di investimento 10ii sono l’Università, i centri di ricerca, gli organismi formativi accreditati, le istituzioni del sistema educativo, i soggetti titolati all’erogazione di servizi per il lavoro, le imprese, la Regione Liguria, i suoi enti strumentali e gli enti locali per quanto eventualmente di rispettiva competenza.</td>
</tr>
</tbody>
</table>

\(^{54}\) In Liguria sono presenti quattro ITS, nati a partire dal 2011, come offerta alternativa all’Università e sono finalizzati a formare tecnici altamente specializzati nelle aree tecnologiche strategiche per il territorio (“Mobilità sostenibile nei settori dei trasporti marittimi e della pesca”, “ICT”, “Nuove tecnologie nel settore meccanico/naualmeccanico, cantieristica e nautica da diporto” e “Efficienza energetica”) Gli ITS si costituiscono secondo la forma della Fondazione di partecipazione che comprende scuole, enti di formazione, imprese, università, centri di ricerca e enti locali.
<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 iv - Migliorare la pertinenza dei sistemi di istruzione e formazione al mercato del lavoro, favorendo il passaggio dall'istruzione al mondo del lavoro e rafforzando i sistemi di istruzione e formazione professionale nonché migliorandone la qualità, anche mediante meccanismi di anticipazione delle capacità, l'adeguamento dei curriculum e l'introduzione e lo sviluppo di programmi di apprendimento basati sul lavoro, inclusi i sistemi di apprendimento duale e i programmi di apprendistato</td>
<td>11 - Accrescimento delle competenze della forza lavoro e agevolazione della mobilità, dell'inserimento/reinserimento lavorativo (10.4)</td>
<td>•Interventi formativi strettamente collegati alle esigenze di inserimento e reinserimento laborativo, prioritariamente indirizzati ai target maggiormente sensibili (over 55, disoccupati di lunga durata, cittadini con bassa scolarità) e alle iniziative di formazione specialistica (in particolare rivolti alla green economy, blue economy, servizi alla persona, servizi socio-sanitari, valorizzazione del patrimonio e delle attività culturali) e per l'imprenditorialità. Percorsi formativi connessi al rilascio di qualificazioni inserite nei repertori nazionale o regionali corredati ove appropriato da azioni di orientamento (10.4.1), •Azioni di aggiornamento delle competenze rivolte a tutta la forza lavoro (incluse le competenze digitali), compresi i lavoratori dipendenti a termine, i lavoratori autonomi, i titolari di microimprese, i soci di cooperativa, anche attraverso metodologie innovative e in coerenza con le diretrici di sviluppo economico dei territori (10.4.2), •Costruzione del Repertorio nazionale dei titoli di studio e delle qualificazioni professionali collegato al quadro europeo (EQF) e implementazione del sistema pubblico nazionale di certificazione delle competenze con lo sviluppo e/o miglioramento dei servizi di orientamento e di validazione e certificazione degli esiti degli apprendimenti conseguiti anche in contesti non formali e informali (10.4.11).</td>
<td>I principali gruppi target delle azioni cofinanziate per il perseguimento dell’Obiettivo specifico della priorità di investimento 10iv per ambedue gli obiettivi specifici sono: i giovani e gli adulti. In termini di condizione sul MdL, si configurano quali principali gruppi di destinatari gli inoccupati, i disoccupati e gli occupati. I principali beneficiari delle azioni cofinanziate per il perseguimento degli Obiettivi specifici della priorità di investimento 10iv sono l’Università, i centri di ricerca, gli organismi formativi accreditati, le istituzioni del sistema educativo, i soggetti titolati all’erogazione di servizi per il lavoro, le imprese, la Regione Liguria, i suoi enti strumentali e gli enti locali per quanto eventualmente di rispettiva competenza.</td>
</tr>
<tr>
<td>12 - Qualificazione dell’offerta di istruzione e formazione tecnica e professionale (10.6)</td>
<td>•Azioni formative professionalizzanti connesse con i fabbisogni dei sistemi produttivi locali, e in particolare rafforzamento degli IFTS, e dei Poli tecnico professionali in una logica di integrazione e continuità con l’Istruzione e la formazione professionale iniziale e in stretta connessione con i fabbisogni espressi dal tessuto produttivo (10.6.2), •Stage/tirocini (anche in altri Paesi), percorsi di alternanza e azioni laboratoriali (10.6.6).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella 75 - Dettaglio delle priorità di investimento, degli obiettivi specifici, delle azioni e dei beneficiari relativi agli elementi del POR FSE 2014-2020 correlati alla formazione professionale ed al coinvolgimento dei portatori di interesse
6.5. Le azioni del Piano e la Programmazione dei Fondi Strutturali FESR 2014-2020

Le azioni e le risorse per l’attuazione delle linee di indirizzo del Piano sono da ricercarsi nell’ambito della prossima Programmazione dei Fondi Strutturali 2014-2020, a cui saranno affiancate specifiche azioni normative e di coinvolgimento di stakeholder e cittadini.

<table>
<thead>
<tr>
<th>Macro obiettivi</th>
<th>Obiettivi generali</th>
<th>Linee di sviluppo</th>
<th>Azioni</th>
<th>Strumenti - programmi regionali</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EE.1</td>
<td>a.Iniziative di natura normativa e diffusione di strumenti finalizzati a favorire il corretto recambio tecnologico di impianti e componenti edilizi, tra cui partnership pubblico-private ed il meccanismo delle ESCo.</td>
<td>POR FESR 2014-2020: ASSE 4 Energia, OT04, Priorità 4b, OS 4.2</td>
</tr>
<tr>
<td>Macro obiettivi</td>
<td>Obiettivi generali</td>
<td>Linee di sviluppo</td>
<td>Azioni</td>
<td>Strumenti - programmi regionali</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
</tbody>
</table>
 b. Definizione di modelli per lo sviluppo di **Aree Produttive Ecologicamente Attrezzate.** | POR FESR 2014-2020:
 - ASSE 4 Energia, OT04, Priorità 4b, OS 4.2
 - ASSE 4 Energia, OT04, Priorità 4c, OS 4.1
 - ASSE 6 Città, OT04, Priorità 4c, OS 6.2
 PSR 2014-2020:
 - Sottomisura 4.01 Supporto agli investimenti nelle aziende agricole
 - Sottomisura 04.02 Supporto agli investimenti nella trasformazione, commercializzazione e sviluppo dei prodotti agricoli |
| | FER. 2 | - Favorire l’installazione di impianti eolici attraverso la semplificazione delle procedure autorizzative | a. **Semplificazione delle procedure autorizzative** attraverso l’analisi degli elementi di attenzione ambientali e paesaggistici che insistono sul territorio regionale al fine di fornire un quadro di indirizzo per la presentazione di progetti compatibili con i vincoli e gli elementi di criticità evidenziati.
 b. **Tavolo tecnico per la per la definizione dei criteri utili alla revisione della Cartografia delle aree non idonee alla collocazione di impianti eolici.**
 c. **Misure della programmazione PSR 2014-2020 a favore delle imprese agricole per l’installazione di impianti eolici di piccola taglia.** | PSR 2014-2020:
 - Sottomisura 4.01 Supporto agli investimenti nelle aziende agricole
 - Sottomisura 04.02 Supporto agli investimenti nella trasformazione, commercializzazione e sviluppo dei prodotti agricoli |
| | FER. 3 | - Sostenere l’installazione di impianti di piccola taglia nel settore idroelettrico e la riattivazione di centraline esistenti | a. **Misure conoscitive relative alle derivazioni, al bilancio idrico ed agli impianti idroelettrici dismessi.**
 b. **Tavolo tecnico per la definizione dei criteri utili alla mappatura dei tratti fluviali non idonei alla collocazione di impianti idroelettrici.** | -- |
| | FER. 4 | - Incrementare la produzione energetica da biogas da RSU | a. **Misure specifiche sulla produzione energetica da biogas derivante da RSU ed acque reflue, in attuazione a quanto previsto dal Piano Regionale di Gestione dei Rifiuti.** | -- |
| | FER. | - Sviluppare la ricerca nei settori sviluppo ed innovazione nel | a. **Sostegno a progetti di ricerca,** | POR FESR 2014-2020:
 - ASSE 1 Ricerca e Innovazione, |
<table>
<thead>
<tr>
<th>Macro obiettivi</th>
<th>Obiettivi generali</th>
<th>Linee di sviluppo</th>
<th>Azioni</th>
<th>Strumenti - programmi regionali</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>tecnologici correlati alle fonti rinnovabili ed all’efficienza energetica</td>
<td>settore dell’energia, in coerenza con quanto previsto dalla Smart Specialisation Strategy regionale e che vedano la collaborazione di GI, PMI e centri di ricerca (anche attraverso fondi POR FESR 2014-2020 e POR FSE 2014-2020).</td>
<td>OT01, Priorità 1a, OS 1.5 ASSE 1 Ricerca e Innovazione, OT01, Priorità 1b, OS 1.1, 1.2 POR FSE 2014-2020: ASSE 3 Istruzione e Formazione, OT10, Priorità 10i, OS 10 ASSE 3 Istruzione e Formazione, OT10, Priorità 10iv, OS 12</td>
<td></td>
</tr>
<tr>
<td>FER. 6</td>
<td>Favorire lo sviluppo delle Smart-grid</td>
<td>a. Misure specifiche per lo sviluppo di reti intelligenti attraverso la partecipazione a programmi europei.</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>FER. 7</td>
<td>Sostenere la diffusione di impianti a biomassa di piccola e media taglia attraverso lo sviluppo della filiera legno-energia e l’utilizzo della biomassa locale</td>
<td>a. Misure specifiche volte a favorire la creazione della filiera legno-energia e la produzione di energia da biomassa forestale, anche attraverso il ricorso a risorse della programmazione PSR 2014-2020, in sinergia con quanto previsto dal Programma Forestale Regionale.</td>
<td>PSR 2014-2020: Sottomisura 4.01 Supporto agli investimenti nelle aziende agricole Sottomisura 04.02 Supporto agli investimenti nella trasformazione, commercializzazione e sviluppo dei prodotti agricoli Sottomisura 06.02 Aiuti all’avviamento di attività imprenditoriali per attività extra-agricole nelle zone rurali Sottomisura 06.04(5c) Investimenti nella creazione di piccole imprese in zone rurali Sottomisura 07.02 Infrastrutture essenziali alle popolazioni rurali Sottomisura 08.06 Investimenti in tecnologie forestali, trasformazione, movimentazione e commercializzazione dei prodotti delle foreste Sottomisura 09.01 costituzione di associazioni e organizzazioni di produttori nei settori agricolo e forestale Sottomisura 16.02 supporto per progetti pilota e per lo sviluppo di nuovi prodotti, pratiche, processi e tecnologie Sottomisura 16.08 sostegno per la stesura di piani forestali di secondo livello</td>
<td></td>
</tr>
<tr>
<td>FER. 8</td>
<td>Incrementare il ricorso alla tecnologia solare termica</td>
<td>a. Misure specifiche di sostegno a progetti in combinazione con azioni volte all’incremento dell’efficienza energetica rivolte</td>
<td>POR FESR 2014-2020: ASSE 4 Energia, OT04, Priorità 4b, OS 4.2 ASSE 4 Energia, OT04, Priorità 4b, OS 4.2</td>
<td></td>
</tr>
<tr>
<td>Macro obiettivi</td>
<td>Obiettivi generali</td>
<td>Linee di sviluppo</td>
<td>Azioni</td>
<td>Strumenti - programmi regionali</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sia agli enti pubblici che alle PMI, a valere sui fondi POR FESR 2014-2020 e PSR 2014-2020.</td>
<td>4c, OS 4.1 ASSE 6 Città, OT04, Priorità 4c, OS 6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PSR 2014-2020: Sottomisura 4.01 Supporto agli investimenti nelle aziende agricole Sottomisura 04.02 Supporto agli investimenti nella trasformazione, commercializzazione e sviluppo dei prodotti agricoli</td>
<td></td>
</tr>
</tbody>
</table>

b. Azioni normative volte a favorire la diffusione della tecnologia delle pompe di calore. | POR FESR 2014-2020: ASSE 4 Energia, OT04, Priorità 4b, OS 4.2 ASSE 4 Energia, OT04, Priorità 4c, OS 4.1 ASSE 6 Città, OT04, Priorità 4c, OS 6.2 |
<table>
<thead>
<tr>
<th>Macro obiettivi</th>
<th>Obiettivi generali</th>
<th>Linee di sviluppo</th>
<th>Azioni</th>
<th>Strumenti - programmi regionali</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O.G.3. Sostegno alla competitività del sistema produttivo regionale</td>
<td>SE.1. Sostenere le imprese che operano nel settore della Green Economy in Liguria</td>
<td>a. Supporto alla competitività delle imprese nel settore della green economy attraverso il sostegno a progetti di innovazione produttiva ed organizzativa anche attraverso misure a valere sulla programmazione dei Fondi POR FESR 2014-2020 e PSR 2014-2020.</td>
<td>POR FESR 2014-2020: ASSE 1 Ricerca e Innovazione, OT01, Priorità 1b, OS 1.1-1.2 ASSE 3 Competitività delle Imprese, OT03, Priorità 3a, OS 3.5 ASSE 3 Competitività delle Imprese, OT03, Priorità 3b, OS 3.2 ASSE 3 Competitività delle Imprese, OT03, Priorità 3c, OS 3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PSR 2014-2020: Sottomisura 01.01 Azioni di formazione e acquisizione di competenze Sottomisura 01.02 Supporto alle attività demostrative e azioni di informazione Sottomisura 01.03 Supporto agli scambi interaziendali di breve durata e alle visite di aziende agricole e forestali Sottomisura 4.01 Supporto agli investimenti nelle aziende agricole Sottomisura 04.02 Supporto agli investimenti nella trasformazione, commercializzazione e sviluppo dei prodotti agricoli Sottomisura 06.02 Aiuti all’avviamento di attività imprenditoriali per attività extra-agricole nelle zone rurali Sottomisura 06.04(5c) Investimenti nella creazione di piccole imprese in zone rurali Sottomisura 08.06 Investimenti in tecnologie forestali, trasformazione, movimentazione e commercializzazione dei prodotti delle foreste Sottomisura 09.01 costituzione di associazioni e organizzazioni di produttori nei settori agricolo e forestale Sottomisura 16.02 supporto per progetti pilota e per lo sviluppo di nuovi prodotti, pratiche, processi e tecnologie.</td>
</tr>
</tbody>
</table>
Macro obiettivi

<table>
<thead>
<tr>
<th>Obiettivi generali</th>
<th>Linee di sviluppo</th>
<th>Azioni</th>
<th>Strumenti - programmi regionali</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>qualificazione nei settori edile ed impiantistico (efficienza energetica e risparmio energetico)</td>
<td>dell’impiantistica attraverso il sostegno a progetti di innovazione produttiva ed organizzativa anche attraverso misure a valere sulla programmazione dei Fondi PORFESR e PSR 2014-2020. b.Analisi e rilevazione dei fabbisogni in termini di innovazione e nuovi investimenti in collaborazione con le associazioni di categoria.</td>
<td>PSR 2014-2020: Sottomisura 01.01 Azioni di formazione e acquisizione di competenze Sottomisura 01.02 Supporto alle attività dimostrative e azioni di informazione POR FSE 2014-2020: ASSE 1 Occupazione, OT8, Priorità 8i, OS 2 ASSE 1 Occupazione, OT8, Priorità 8ii, OS 3 ASSE 3 Istruzione e Formazione, OT10, Priorità 10i, OS 10 ASSE 3 Istruzione e Formazione, OT10, Priorità 10v, OS 11-12</td>
</tr>
<tr>
<td></td>
<td>Coinvolgere i portatori di interesse nel settore dell’energia in tutte le fasi di attuazione del Piano</td>
<td>a.Seminar periodici, in collaborazione con le associazioni di categoria, rivolti ad amministratori di condominio ed imprenditori. b.Accordi di programma con le associazioni di categoria di artigiani, piccole e medie imprese. c.Tavoli tecnici e comitati di pilotaggio con altri soggetti pubblici.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Realizzare azioni di sensibilizzazione rivolte ai cittadini</td>
<td>a.Informazione diffusa rivolta ai cittadini per la divulgazione della cultura dell’efficienza energetica e dello sfruttamento delle fonti rinnovabili. b.Informazione specifica su strumenti finanziari ed opportunità tecnologiche</td>
<td></td>
</tr>
</tbody>
</table>

6.6. Le ricadute economiche ed occupazionali
Il raggiungimento di tale obiettivo richiederà da una parte un aumento della potenza installata da fonte rinnovabile e dall’altra l’adozione di azioni di efficientamento che consentano di ridurre il consumo di energia.

Allo scopo di quantificare le ricadute socio economiche ed in particolare il volume di investimenti che potranno essere generati dalla realizzazione degli obiettivi di Piano, è stata fatta primariamente una stima delle risorse economiche che potrebbero essere attivate impiegando parametri di costo di investimento elaborati da esperti del settore.

Successivamente, al fine di valutare quanto potrebbe essere il contributo al soddisfacimento della domanda di investimenti stimati fornito dal sistema produttivo ligure operante nelle fonti rinnovabili, è stata svolta un’analisi sulle “imprese green”. Analoga analisi e stima sull’impatto economico ed occupazionale è stata condotta per il segmento dell’efficienza energetica riguardante il settore edilizio abitativo.
6.6.1. Le ricadute economiche ed occupazionali derivanti dalle fonti rinnovabili

La crescita della componente FER-E è sostanzialmente connessa all’utilizzo di fonti rinnovabili legate alle tecnologie dell’Idroelettrico, del Fotovoltaico, dell’Eolico (on-shore), dal Biogas; mentre la seconda, FER-C, vede coinvolti sostanzialmente impianti a Biomassa, Pompe di calore e Solare termico.

Per la stima delle ricadute economiche legate alla nuova potenza installata di FER si è proceduto secondo i seguenti step:

1) Identificazione, per ciascuna tecnologia considerata, dell’incremento di potenza installata risultante dalla differenza tra la potenza installata futura prevista dal Piano e quella esistente, al netto delle sostituzioni di impianti nel frattempo divenuti obsoleti (Tabella 76);

2) Applicazione, a ciascuna tecnologia, di parametri di costo di investimento elaborati da esperti del settore (Tabella 76).

La simulazione, condotta in base ai dati di previsione contenuti nel PEAR 2014-2020 ed alle ipotesi di costo per MW installato adottate per ciascuna tipologia di impianto, consente di stimare un volume complessivo di investimenti pari a poco più di 1,6 miliardi di € (Tabella 76).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini idroelettrico</td>
<td>24</td>
<td>3.500</td>
<td>84</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Eolico</td>
<td>203</td>
<td>1.650</td>
<td>335</td>
<td>41</td>
<td>21</td>
</tr>
<tr>
<td>Fotovoltaico</td>
<td>146</td>
<td>2.500</td>
<td>365</td>
<td>44</td>
<td>23</td>
</tr>
<tr>
<td>Biogas</td>
<td>10</td>
<td>4.000</td>
<td>40</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Totale FER-E</td>
<td>383</td>
<td>824</td>
<td>100</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Biomassa</td>
<td>1.299</td>
<td>300</td>
<td>390</td>
<td>49</td>
<td>24</td>
</tr>
<tr>
<td>Pompa di calore</td>
<td>1.299</td>
<td>300</td>
<td>390</td>
<td>49</td>
<td>24</td>
</tr>
<tr>
<td>Solare termico</td>
<td>89</td>
<td>1.800</td>
<td>160</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Totale FER-C</td>
<td>2.088</td>
<td>795</td>
<td>100</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Totale FER-E + FER-C</td>
<td>2.471</td>
<td>1.619</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella 76 – Investimenti generati da aumento di potenza installata nel periodo “2012–2020”.
Fonte: Elaborazioni Liguria Ricerche S.p.A.

Per la stima dell’occupazione indotta dalla realizzazione degli impianti e della loro gestione e manutenzione sono stati adottati alcuni parametri presenti nella letteratura specifica di settore riguardanti il numero di risorse umane necessarie per la realizzazione di 1 MW di potenza installata (Construction, Installation, Manufacturing - CIM) e di quelle destinate alla Gestione e Manutenzione (Operating and Maintenance - O&M). Nella Tabella 77 sono riportati i volumi occupazionali stimati per la fase di realizzazione degli impianti (CIM) e quelli inerenti la loro gestione e manutenzione (O&M).

Una volta realizzati gli impianti (a regime dopo il 2020) ogni anno potrebbero essere impegnate mediamente circa 1.800 persone nella gestione e nella manutenzione degli impianti (O&M).
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[MW]</td>
<td>[anni/uomo totali] [%]</td>
<td>[addetti/anno] [%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mini idroelettrico</td>
<td>5,71</td>
<td>1,14</td>
<td>24</td>
<td>137</td>
<td>1</td>
</tr>
<tr>
<td>Eolico</td>
<td>6,82</td>
<td>0,24</td>
<td>203</td>
<td>1.385</td>
<td>7</td>
</tr>
<tr>
<td>Fotovoltaico</td>
<td>25,49</td>
<td>0,50</td>
<td>146</td>
<td>3.722</td>
<td>20</td>
</tr>
<tr>
<td>Biogas</td>
<td>12,51</td>
<td>5,04</td>
<td>10</td>
<td>125</td>
<td>1</td>
</tr>
<tr>
<td>Totale FER-E</td>
<td>383</td>
<td>5.369</td>
<td>28</td>
<td>199</td>
<td>11</td>
</tr>
<tr>
<td>Biomassa</td>
<td>6,40</td>
<td>0,89</td>
<td>1.299</td>
<td>8.307</td>
<td>44</td>
</tr>
<tr>
<td>Pompa di calore</td>
<td>6,84</td>
<td>0,53</td>
<td>700</td>
<td>4.788</td>
<td>25</td>
</tr>
<tr>
<td>Solare termico</td>
<td>6,84</td>
<td>0,53</td>
<td>89</td>
<td>609</td>
<td>3</td>
</tr>
<tr>
<td>Totale FER-C</td>
<td>2.088</td>
<td>13.704</td>
<td>72</td>
<td>1.570</td>
<td>89</td>
</tr>
<tr>
<td>Totale FER E + FER C</td>
<td>2.471</td>
<td>19.073</td>
<td>100</td>
<td>1.769</td>
<td>100</td>
</tr>
</tbody>
</table>

NOTA

CIM: Construction, Installation, Manufacturing = Fase di realizzazione e installazione degli impianti
O&M: Operation and Maintenance = Fase di gestione degli impianti

Fonte: Elaborazioni Liguria Ricerche S.p.A.

Parte degli investimenti generati dal raggiungimento degli obiettivi previsti nel Piano potrà essere realizzata dal sistema produttivo ligure, in considerazione dei seguenti aspetti:

1) presenza sul territorio regionale di alcune aziende storicamente leader nel settore energetico, che tuttavia non operano su tutti i segmenti delle rinnovabili e su tutte le taglie dimensionali di impianto;

2) esistenza in alcune aziende di competenze significative su determinate tecnologie (mini-idroelettrico, biogas e biomasse), di una generalizzata attitudine ad operare come General Contractor e di alcune capacità di innovazione e ricerca, ma di esigue capacità manifatturiere;

3) limitata propensione all’internazionalizzazione delle aziende del settore.

Al fine di quantificare le ricadute per le aziende liguri si è cercato di perimetrare l’ambito industriale delle imprese in regione per le quali è possibile ipotizzare ricadute dagli investimenti previsti, individuandone la localizzazione, il segmento di attività, la capacità di operare come fornitore chiavi-in-mano di un impianto (General Contractor), piuttosto che come subfornitore e la propensione all’internazionalizzazione.

Una volta definito il numero di imprese che possono ragionevolmente considerarsi presenti nel campo delle rinnovabili (complessivamente ne sono risultate 42), si è proceduto ad intervistarne circa il 60% e, laddove non è stato possibile farlo, si sono acquisite indicazioni per via indiretta (stampa specialistica o informazioni disponibili presso operatori del settore).

L’analisi condotta ha consentito di costruire un quadro della competitività delle aziende liguri a seguito del quale stato calcolato il possibile volume di ricadute sul sistema produttivo regionale.

Il primo passaggio per giungere alla stima è consistito nella definizione, per ciascuna tecnologia, delle macro-componenti della filiera produttiva, intendendo la filiera come la catena di lavoro che parte dallo studio tecnico-economico-finanziario-autorizzativo propedeutico ad un’iniziativa, e si conclude con il montaggio, il collaudo e l’avvio operativo dell’impianto.

Per ciascun segmento della filiera, inoltre, è stata stimata l’incidenza percentuale del costo che mediamente il singolo segmento ha sul totale del costo di investimento.
Successivamente, per valutare l’ordine di grandezza delle ricadute economiche degli investimenti stimati sul sistema produttivo ligure, si è proceduto a definire il posizionamento tecnologico-realizzativo (inteso come possesso delle competenze tecnologico-progettuali e manifatturiere-costruttive) delle imprese su ciascun segmento della filiera per ogni delle diverse tecnologie.

Si è valutato, in primo luogo, se le aziende risultano essere in grado di assumere l’incarico di fornire un impianto nella formula chiavi-in-mano agendo, quindi, come un General Contractor.

Nel caso in cui dall’analisi le imprese ligure sono risultate in misura sostanziale capaci di operare come General Contractor (questo è stato fatto per ogni singola tecnologia), allora si è assunto che l’investimento generato dalla realizzazione di nuova potenza installata in accordo con gli obiettivi del Piano possa essere, in linea di principio, appannaggio del sistema produttivo ligure; l’investimento oggetto di valutazione è stato da noi denominato “investimento aggredibile”. Dall’analisi condotta, è emerso che il sistema produttivo ligure presenta, su tutte le tecnologie considerate, un’Alta capacità di General Contracting. A ragione di questo fatto, gli investimenti aggredibili sono pari agli investimenti generati dalla realizzazione degli impianti previsti a Piano.

L’“investimento aggredibile” non è, ovviamente, quello che potrebbe essere effettivamente acquisito (nel seguito denominato “investimento acquisibile”) in quanto per passare da una “potenzialità” ad una “possibilità” generalmente devono realizzarsi alcune condizioni che fanno sì che di fatto si riducano, anche sensibilmente, le possibilità di acquisizione di una commessa da parte di un’azienda.

Nello studio, a ciascun segmento della filiera è stato assegnato un giudizio di competitività del sistema produttivo ligure considerato nel suo complesso, su una scala discreta compresa tra un giudizio minimo (Basso=B) ad uno massimo (Alto=A) passando per giudizi Medio Basso=MB, Medio=M e Medio Alto=MA.

A ciascuno dei cinque livelli di giudizio è stato assegnato un valore percentuale compreso tra 0% e 100% (Basso = 0%; Medio Basso = 25%; Medio = 50%; Medio Alto = 75%; Alto = 100%).

In sintesi per calcolare l’“investimento acquisibile” si è proceduto nel seguente modo:

a) Per ciascuna tecnologia è stato valutato se la capacità di gestione di un’iniziativa da parte delle imprese ligure sia da General Contractor; nel caso in cui il giudizio fosse “capacità Alta”, allora si è considerato l’intero ammontare dell’investimento calcolato aggredibile, negli altri casi è stato scartato l’intero investimento.

b) L’investimento aggredibile è stato ripartito in ciascun segmento della filiera; ogni segmento può divenire investimento acquisibile solo se presenta una capacità competitiva Medio Alta o Alta; in caso contrario l’investimento aggredibile non diventa acquisibile.

c) Applicando il criterio di calcolo indicato al punto precedente a tutte le tecnologie considerate, è stato infine calcolato il volume totale acquisibile dal sistema produttivo ligure.

Nella Tabella 78 sono riportati i volumi di investimento stimati per ciascuna tecnologia di possibile acquisizione da parte del sistema produttivo ligure.
Dalla Tabella 78 emerge che il sistema produttivo ligure è in grado di esprimere una capacità acquisitiva complessivamente apprezzabile potendo contare su un volume di investimenti acquisibili di quasi **720 milioni di €**, pari a circa il 44% del totale investimenti generati dal Piano nel periodo 2014-2020.

6.6.2. Le ricadute economiche ed occupazionali derivanti dall'introduzione di misure di efficientamento energetico nel settore residenziale

La stima delle ricadute economiche derivanti dagli interventi di efficienza energetica nel settore residenziale è stata sviluppata a partire dai dati di previsione di cui al Cap. 6.2 relativamente ai seguenti interventi sul patrimonio edilizio ligure:

1) Isolamento termico delle pareti opache verticali;
2) Isolamento delle coperture (tetti);
3) Sostituzione di serramenti;
4) Impianti centralizzati di riscaldamento;
5) Impianti autonomi di riscaldamento;
6) Installazione valvole termostatiche
7) Installazione valvole termostatiche e contabilizzatori di calore.

Relativamente alle sei tipologie di intervento indicate, ai fini delle previsioni di cui al Cap. 6.2, nel PEAR 2014 – 2020 sono state stimate:

- le superfici interessate dagli interventi di efficientamento per le voci 1), 2) e 3);
- le unità immobiliari oggetto di sostituzione degli impianti di riscaldamento espresse in potenza complessivamente interessata dagli interventi per le voci 4) ed 5);
- le unità di valvole termostatiche interessate dall’installazione 6).

Per ciascuna delle voci oggetto di analisi è stato stimato il costo di installazione, comprensivo di materiale e manodopera. La stima dell’impatto economico delle azioni di efficientamento energetico è stata effettuata valorizzando, per ciascun intervento al costo unitario stimato, le quantità previste dal PEAR.

Complessivamente gli interventi previsti a Piano potrebbero generare investimenti pari a circa **2,3 miliardi di €** nel periodo 2014-2020 (Tabella 79). Al contrario di quanto svolto per la sezione riguardante le fonti rinnovabili, non è stato possibile stimare l’impatto occupazionale degli interventi connessi con...
l’efficientamento energetico avvalendosi di analisi già svolte acquisibili in rete o su stampa specialistica di settore. Si è pertanto stimata la percentuale media di manodopera (per posa in opera e/o installazione) contenuta nell’investimento per ciascuna delle tipologie di intervento di efficienza energetica: per gli investimenti generati dal PEAR nel periodo 2014-2020 si stima pertanto un numero di persone occupate pari a circa 3.000 - 4.000 all’anno.

<table>
<thead>
<tr>
<th>Intervento di efficientamento energetico che prevedono coperture/sostituzioni nuove installazioni</th>
<th>Indicatore</th>
<th>Investimenti complessivi negli anni di Piano [M€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Superfici opache verticali (isolamento termico)</td>
<td>Costo a metro quadro di isolamento parete [€/m²]</td>
<td>560</td>
</tr>
<tr>
<td>2) Superfici di copertura orizzontali (isolamento termico)</td>
<td>Costo a metro quadro di isolamento copertura [€/m²]</td>
<td>314</td>
</tr>
<tr>
<td>3) Serramenti</td>
<td>Costo a metro quadro per sostituzione serramenti [€/m²]</td>
<td>596</td>
</tr>
<tr>
<td>4) Generatore in impianto centralizzato</td>
<td>Costo per unità di potenza installata [€/kW]</td>
<td>152</td>
</tr>
<tr>
<td>5) Generatore in impianto autonomo</td>
<td>Costo per unità di potenza installata [€/kW]</td>
<td>415</td>
</tr>
<tr>
<td>6) Valvole termostatiche</td>
<td>Costo per unità di valvola [€/valvola]</td>
<td>152</td>
</tr>
<tr>
<td>7) Valvole termostatiche + contabilizzazione calore</td>
<td>Costo per unità di valvola [€/valvola]</td>
<td>71</td>
</tr>
</tbody>
</table>

NOTA

Al Capitolo 6.2 l’ipotesi formulata prevede l’installazione di 3.628.200 valvole nell’intero periodo; nella presente stima si è ipotizzato che di queste il 20% avvenga con la contabilizzazione del calore (punto 7).

Fonte: Elaborazioni Liguria Ricerche S.p.A.

In base alle stime effettuate risulta che la quota più consistente è rappresentata dal segmento degli interventi sull’involucro: i serramenti (26%), le pareti verticali (25%) e le coperture (14%) pesano per il 65% del totale. La parte definibile “impiantistica termica” (caldaie e valvole termostatiche) pesa per il 35% del totale degli investimenti.

In linea generale si può osservare che gli interventi previsti nel settore dell’efficienza energetica potrebbero presentare ricadute socio – economiche dirette sul sistema produttivo regionale legate alla parte edile, la gestione e la manutenzione degli impianti, per le quali le aziende liguri presentano competenze consolidate, mentre il sistema si presenta più debole per quel che riguarda la produzione di materiali (coibenti, profili per serramenti, generatori di calore e componentistica termica): in questo senso la Regione Liguria intende sostenere la nascita e lo sviluppo di imprese operanti non solo nei settori tradizionalmente presenti sul territorio, ma anche di aziende competitive nelle suddette aree.

In base alle stime sulla quota di investimento relativa alla manodopera e alla remunerazione dell’attività di impresa, l’ordine di grandezza della porzione di investimento che potrebbe ricadere sul sistema produttivo
ligure è compreso tra il 45% ed il 55% degli investimenti complessivi determinati dalle azioni di efficientamento energetico, pari ad un totale, sul periodo di Piano, compreso tra 1 e 1,2 miliardi di €. Complessivamente le azioni del PEAR 2014 – 2020 potrebbero generare su tutto il periodo ricadute sul sistema produttivo ligure pari a circa 1,7-1,9 miliardi di € come risultato di circa 700 milioni, per la quota relativa al segmento delle rinnovabili, e di 1-1,2 miliardi, per l’efficientamento energetico.

Azioni a sostegno della competitività del sistema produttivo regionale

La Regione Liguria intende promuovere la competitività delle imprese regionali operanti nei settori della green economy (fonti rinnovabili) e della white economy (efficienza energetica) attraverso il **sostegno a progetti di innovazione produttiva ed organizzativa** anche attraverso misure a valere sulla programmazione dei fondi POR FESR 2014-2020 (Tabella 80 e Tabella 81) e PSR 2014-2020 (Tabella 82 e Tabella 83).

Nel corso dell’attuazione e del monitoraggio del Piano, la Regione, avvalendosi della partecipazione e del coinvolgimento degli stakeholder (imprese, sindacati, associazioni di categoria, ordini professionali,…) provvederà a successivi approfondimenti sugli aspetti occupazionali derivanti dal PEAR, al fine di analizzare e monitorare l’evoluzione degli occupati sul territorio regionale a partire dagli investimenti acquisibili.

<table>
<thead>
<tr>
<th>POR-FESR 2014-2020</th>
<th>Asse</th>
<th>Obiettivo Tematico</th>
<th>Priorità</th>
<th>Obiettivo Specifico</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 RICERCA E INNOVAZIONE</td>
<td>01 Rafforzare la ricerca, lo sviluppo tecnologico e l’innovazione.</td>
<td>1b Promuovere gli investimenti delle imprese in R&I sviluppando collegamenti e sinergie tra imprese, centri di ricerca e sviluppo e il settore dell’istruzione superiore, in particolare promuovendo gli investimenti nello sviluppo di prodotti e servizi, il trasferimento di tecnologie, l’innovazione sociale, l’ecoinnovazione, le applicazioni nei servizi pubblici, lo stimolo della domanda, le reti, i cluster e l’innovazione aperta attraverso la specializzazione intelligente, nonché sostenere la ricerca tecnologica e applicata, le linee pilota, le azioni di validazione precoce dei prodotti, le capacità di fabbricazione avanzate e la prima produzione, soprattutto in tecnologie chiave abilitanti, e la diffusione di tecnologie con finalità generali.</td>
<td>1.1 Incremento dell’attività di innovazione delle imprese (Rif. RA 1.1 AP).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2 Rafforzamento del sistema innovativo regionale e nazionale (Rif. RA 1.2 AP).</td>
</tr>
<tr>
<td>3 COMPETITIVITÀ DELLE IMPRESE</td>
<td>03 Promuovere la competitività delle piccole e medie imprese, del settore agricolo (per il FEASR) e del settore della pesca e dell’acquacoltura (per il FEAMP).</td>
<td>3a Promuovere l’imprenditorialità, in particolare facilitando lo sfruttamento economico di nuove idee e promuovendo la creazione di nuove aziende, anche attraverso incubatrici di imprese.</td>
<td>3.5 Nascita e Consolidamento delle Micro, Piccole e Medie Imprese (Rif. RA 3.5 AdP).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3b Sviluppare e realizzare nuovi modelli di attività per le PMI, in particolare per l’internazionalizzazione.</td>
<td>3.2 Sviluppo occupazionale e produttivo in aree territoriali colpite da crisi diffusa delle attività.</td>
<td></td>
</tr>
</tbody>
</table>
POR-FESR 2014-2020

<table>
<thead>
<tr>
<th>Asse</th>
<th>Obiettivo Tematico</th>
<th>Priorità</th>
<th>Obiettivo Specifico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>produttive (Rif. RA 3.2 AP).</td>
</tr>
<tr>
<td>3c</td>
<td>Sostenere la creazione e l'ampliamento di capacità avanzate per lo sviluppo di prodotti e servizi.</td>
<td></td>
<td>3.1 Rilancio della propensione agli investimenti del sistema produttivo (Rif. RA 3.1 AP).</td>
</tr>
</tbody>
</table>

Tabella 80 - Elementi del POR FESR 2014-2020 correlati al sostegno al settore della Green economy in Liguria

POR-FESR 2014-2020

ASSE 1 - RICERCA

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>Promuovere gli investimenti delle imprese in R&I, sviluppando collegamenti e sinergie tra imprese, centri di ricerca e sviluppo e il settore dell'istruzione superiore, in particolare promuovendo gli investimenti nello sviluppo di prodotti e servizi, il trasferimento di tecnologie, l'innovazione sociale, l'ecoinnovazione, le applicazioni nei servizi pubblici, lo stimolo della domanda, le reti, i cluster e l'innovazione aperta attraverso la specializzazione intelligente, nonché sostenere la ricerca tecnologica e applicata, le linee pilota, le azioni di validazione precoce dei prodotti, le capacità di fabbricazione avanzate e la prima produzione, soprattutto in tecnologie chiave abilitanti, e la diffusione di tecnologie con finalità generali</td>
<td>Sostegno alla valorizzazione economica dell'innovazione attraverso la sperimentazione e l'adozione di soluzioni innovative nei processi, nei prodotti e nelle formule organizzative, nonché attraverso il finanziamento dell'industrializzazione dei risultati della ricerca (rif. Azione 1.1.3 AP).</td>
</tr>
</tbody>
</table>

| Os1.1 - Incremento dell'attività di innovazione delle imprese (Rif. RA 1.1 AP) | Supporto alla realizzazione di progetti complessi di attività di ricerca e sviluppo su poche aree tematiche di rilievo e all'applicazione di soluzioni tecnologiche funzionali alla realizzazione delle strategie di S3 (rif. Azione 1.2.4 AP). | Imprese, singole o in forma aggregata, Distretti Tecnologici, Laboratori pubblico-privati di ricerca; Poli di Innovazione, cluster e Reti di impresa. Le grandi imprese sono ammissibili a finanziamento nell'ambito dell'OT1 esclusivamente in riferimento allo sviluppo di progetti di effettiva ricerca e innovazione industriale e alla sperimentazione dell'industrializzazione dei risultati da essi derivanti; lo sfruttamento industriale dei risultati della ricerca per la produzione di prodotti standardizzati (prodotti di massa) attraverso l'utilizzo di tecnologie esistenti non è invece ammissibile a finanziamento nell'ambito dell'OT1. |
| Os1.2 - Rafforzamento del sistema innovativo regionale e nazionale (Rif. RA 1.2 AP). | | |

O.T. 01 – Rafforzare la ricerca, lo sviluppo tecnologico e l'innovazione

| | O.T. 175 |
ASSE 3 - COMPETITIVITÀ DELLE IMPRESE

O.T. 03 – Promuovere la competitività delle piccole e medie imprese, del settore agricolo (per il FEASR) e del settore della pesca e dell’acquacoltura (per il FEAMP)

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a - Promuovere l'imprenditorialità, in particolare facilitando lo sfruttamento economico di nuove idee e promuovendo la creazione di nuove aziende, anche attraverso incubatrici di imprese.</td>
<td>OS3.5 - Nascita e Consolidamento delle Micro, Piccole e Medie Imprese (Rif. RA 3.5 AdP).</td>
<td>Interventi di supporto alla nascita di nuove imprese sia attraverso incentivi diretti, sia attraverso l’offerta di servizi, sia attraverso interventi di micro finanza (Rif. Azione 3.5.1 AP).</td>
<td>Imprese neo costituite fino alla fase di start up.</td>
</tr>
<tr>
<td>3b - Sviluppare e realizzare nuovi modelli di attività per le PMI, in particolare per l'internazionalizzazione.</td>
<td>OS3.2 - Sviluppo occupazionale e produttivo in aree territoriali colpite da crisi diffusa delle attività produttive (Rif. RA 3.2 AP).</td>
<td>Interventi di sostegno ad aree territoriali colpite da crisi diffusa delle attività produttive, finalizzati alla mitigazione degli effetti delle transizioni industriali sugli individui e sulle imprese (Rif. Azione 3.2.1 AP).</td>
<td>PMI, in forma singola o associata.</td>
</tr>
<tr>
<td>3c - Sostenere la creazione e l’ampliamento di capacità avanzate per lo sviluppo di prodotti e servizi.</td>
<td>OS3.1 - Rilancio della propensione agli investimenti del sistema produttivo (Rif. RA 3.1 AP).</td>
<td>Aiuti per investimenti in macchinari, impianti e beni intangibili, e accompagnamento dei processi di riorganizzazione e ristrutturazione aziendale” (Rif.Azione 3.1.1 AP).</td>
<td>PMI in forma singola o associata.</td>
</tr>
</tbody>
</table>

Tabella 81 - Dettaglio delle priorità di investimento, degli obiettivi specifici, delle azioni e dei beneficiari relativi agli elementi del POR FESR 2014-2020 correlati al sostegno al settore della Green economy in Liguria

PSR 2014-2020

<table>
<thead>
<tr>
<th>Misura</th>
<th>Sottomisure</th>
</tr>
</thead>
<tbody>
<tr>
<td>M01 Trasferimento di conoscenze e azioni di informazione (Art.14)</td>
<td>01.01 azioni di formazione e acquisizione di competenze 01.02 supporto alle attività dimostrative e azioni di informazione 01.03 supporto agli scambi interaziendali di breve durata e alle visite di aziende agricole e forestali</td>
</tr>
<tr>
<td>M04 Investimenti in immobilizzazioni materiali (Art. 17)</td>
<td>04.01 supporto agli investimenti nelle aziende agricole 04.02 supporto agli investimenti nella trasformazione,</td>
</tr>
</tbody>
</table>
Due imprese organizzazioni
Interventi
La M16
M09 Costituzione di associazioni e organizzazioni di produttori (Art.27)
M16 Cooperazione

commercializzazione e sviluppo dei prodotti agricoli

<table>
<thead>
<tr>
<th>Interventi formativi e di acquisizione di competenze sulle tematiche:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• conseguimento del requisito di conoscenza e competenza professionale per giovani di nuovo insediamento;</td>
</tr>
<tr>
<td>• conseguimento di qualifiche professionali nel settore forestale;</td>
</tr>
<tr>
<td>• trasferimento delle conoscenze relative ad obblighi ed impegni derivanti da normative;</td>
</tr>
<tr>
<td>• creazione e aggiornamento di figure professionali utili alla multifunzionalità;</td>
</tr>
<tr>
<td>• adozione di strumenti di gestione economico-finanziaria ed organizzativa;</td>
</tr>
<tr>
<td>• organizzazione delle filiere, marketing, commercializzazione e certificazioni, sicurezza alimentare, salute delle piante e degli animali e benessere animale biodiversità;</td>
</tr>
<tr>
<td>• trasferimento di innovazione di tecnologie e sistemi di coltivazione, di allevamento, compresa la prevenzione e la lotta fitosanitaria, la post raccolta, la conservazione, la trasformazione dei prodotti e la gestione sostenibile delle risorse naturali, dell’ambiente, del paesaggio rurale e delle aree forestali;</td>
</tr>
<tr>
<td>• azioni formative, funzionali e collegate ai progetti di cooperazione, di cui alla misura “M16 - Cooperazione (Art. 35)”.</td>
</tr>
</tbody>
</table>

Due tipi di azioni ammissibili:

• “attività formativa”: corsi di formazione e di aggiornamento professionale in campo agricolo, alimentare e forestale sulle citate tematiche, coerenti con i fabbisogni ed obiettivi individuati nel PSR, per raggiungere concreti obiettivi formativi per gruppi omogenei di destinatari.

• “acquisizione di competenze”. Rientrano in questa azione:
 – coaching (tutoraggio): prevede l’attività di affiancamento di un tecnico, da svolgersi nell’azienda dell’utente, mirata all’acquisizione di competenze, conoscenze specifiche e capacità idonee e personalizzate al fine di rendere il destinatario in grado di applicarle nella conduzione o diversificazione aziendale, rispetto alle tematiche prioritarie;

Sono destinatari delle azioni:
• imprenditori agricoli, singoli e associati e loro dipendenti e coadiuvanti familiari;
• titolari di imprese forestali, singoli e associati e loro dipendenti e coadiuvanti familiari;
• gestori del territorio, rappresentati da Comuni, Enti Parco ed enti gestori dei siti della Rete Natura 2000;
• operatori economici, che siano PMI (microimprese, piccole imprese o medie imprese), come definite nella raccomandazione 2003/361/CE della Commissione, operanti in zone rurali.

Sono beneficiari del sostegno dell’operazione i prestatori di Servizi di trasferimento di conoscenze e informazioni, selezionati mediante una procedura ad

Tabella 82 - Elementi del PSR 2014-2020 correlati al sostegno al settore della Green economy in Liguria

PSR 2014-2020
MISURA M01 - Trasferimento di conoscenze e azioni di informazione (Art. 14)
La misura sostiene il trasferimento delle conoscenze, delle innovazioni e delle informazioni, tecnico ed economiche, anche tramite la diffusione di buone pratiche, a favore degli imprenditori e degli addetti nei settori dell’agricoltura, dell’alimentazione e della forestazione, dei gestori del territorio e delle PMI operanti nelle aree rurali.

SOTTOMISURA M01.01 - AZIONI DI FORMAZIONE E ACQUISIZIONE DI COMPETENZE

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interventi formativi e di acquisizione di competenze sulle tematiche:</td>
<td></td>
</tr>
<tr>
<td>• conseguimento del requisito di conoscenza e competenza professionale per giovani di nuovo insediamento;</td>
<td></td>
</tr>
<tr>
<td>• conseguimento di qualifiche professionali nel settore forestale;</td>
<td></td>
</tr>
<tr>
<td>• trasferimento delle conoscenze relative ad obblighi ed impegni derivanti da normative;</td>
<td></td>
</tr>
<tr>
<td>• creazione e aggiornamento di figure professionali utili alla multifunzionalità;</td>
<td></td>
</tr>
<tr>
<td>• adozione di strumenti di gestione economico-finanziaria ed organizzativa;</td>
<td></td>
</tr>
<tr>
<td>• organizzazione delle filiere, marketing, commercializzazione e certificazioni, sicurezza alimentare, salute delle piante e degli animali e benessere animale biodiversità;</td>
<td></td>
</tr>
<tr>
<td>• trasferimento di innovazione di tecnologie e sistemi di coltivazione, di allevamento, compresa la prevenzione e la lotta fitosanitaria, la post raccolta, la conservazione, la trasformazione dei prodotti e la gestione sostenibile delle risorse naturali, dell’ambiente, del paesaggio rurale e delle aree forestali;</td>
<td></td>
</tr>
<tr>
<td>• azioni formative, funzionali e collegate ai progetti di cooperazione, di cui alla misura “M16 - Cooperazione (Art. 35)”.</td>
<td></td>
</tr>
</tbody>
</table>

Due tipi di azioni ammissibili:

• “attività formativa”: corsi di formazione e di aggiornamento professionale in campo agricolo, alimentare e forestale sulle citate tematiche, coerenti con i fabbisogni ed obiettivi individuati nel PSR, per raggiungere concreti obiettivi formativi per gruppi omogenei di destinatari.

• “acquisizione di competenze”. Rientrano in questa azione:
 – coaching (tutoraggio): prevede l’attività di affiancamento di un tecnico, da svolgersi nell’azienda dell’utente, mirata all’acquisizione di competenze, conoscenze specifiche e capacità idonee e personalizzate al fine di rendere il destinatario in grado di applicarle nella conduzione o diversificazione aziendale, rispetto alle tematiche prioritarie;

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>“attività dimostrativa”: volta ad illustrare e dimostrare direttamente in “campo” la validità tecnica, economica ed ambientale (se prevista) delle innovazioni proposte, già testate, pronte per l’utilizzo e quelle immesse sul mercato, al fine di ridurre i costi di produzione, di sostenere la competitività e la sostenibilità ambientale, di organizzare la filiera o promuovere la diversificazione e la multifunzionalità aziendale. I progetti devono riguardare in particolare le tematiche sotto riportate secondo il seguente ordine decrescente di priorità:</td>
<td>Sono destinatari delle azioni:</td>
</tr>
<tr>
<td>• innovazioni di prodotto tramite l’allestimento e la gestione di campi catalogo di nuove varietà e di specie vegetali e di campi di conservazione della biodiversità;</td>
<td>• imprenditori agricoli, singoli e associati, e loro dipendenti e coadiuvanti familiari;</td>
</tr>
<tr>
<td>• strategie di gestione del suolo, delle risorse idriche e per la riduzione dell’utilizzo di fitofarmaci e dei fertilizzanti (es. nitrati);</td>
<td>• titolari di imprese forestali, singoli e associati, e loro dipendenti e coadiuvanti familiari;</td>
</tr>
<tr>
<td>• innovazioni tecnologiche e impiantistiche a ridotto consumo energetico (fino a emissioni zero) e a basso impatto ambientale, in particolare per le colture protette;</td>
<td>• gestori del territorio, rappresentati da Comuni, Enti Parco ed enti gestori dei siti della Rete Natura 2000;</td>
</tr>
<tr>
<td>• interventi selvicolturali, compreso la meccanizzazione e l’organizzazione dei cantiere forestali e per la riduzione dell’incidenza sul comparto bionaturalistico;</td>
<td>• altri operatori economici, che siano PMI, secondo i criteri definiti a livello UE, operanti in zone rurali.</td>
</tr>
<tr>
<td>• pratiche e esperienze innovative per la promozione dell’agricoltura sociale;</td>
<td>Sono beneficiari del sostegno dell’operazione:</td>
</tr>
<tr>
<td>• modelli innovativi aziendali di allevamento e per il miglioramento e la riduzione dei costi di di allevamento e di alimentazione del bestiame;</td>
<td>• i Prestatori di Servizi di trasferimento di conoscenze e informazioni, selezionati mediante una procedura ad evidenza pubblica e aperta;</td>
</tr>
<tr>
<td>• tecniche enologiche innovative per i vini liguri finalizzate a migliorare gli standard qualitativi e organoleptici e di tipicità;</td>
<td>• la Regione Liguria, direttamente o tramite i propri enti strumentali (in house) nel rispetto delle condizioni definite nel PSR.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sono ammesse azioni di “supporto agli scambi interaziendali di breve durata” e “visite ad aziende agricole e forestali”. Sono entrambe azioni “formative” che seguono principalmente un approccio “ insegnare-imparare”: un’impresa, con l’eventuale supporto di tecnici esperti, fornisce direttamente ad altri imprenditori interessati le proprie conoscenze relativamente alle buone prassi, alle tecnologie e tecniche innovative adottate nella propria azienda. Il contenuto delle suddette azioni è limitato ai seguenti temi prioritari secondo il seguente ordine decrescente di priorità:</td>
<td>Sono destinatari delle azioni:</td>
</tr>
<tr>
<td>• pratiche e tecniche innovative di produzione (agricola e forestale), nel campo del</td>
<td>• per il settore agricolo: imprenditori agricoli e loro dipendenti e coadiuvanti familiari;</td>
</tr>
<tr>
<td></td>
<td>• per il settore forestale: titolari di imprese forestali e loro dipendenti e coadiuvanti</td>
</tr>
</tbody>
</table>
risparmio energetico e idrico e utilizzo di fonti energetiche rinnovabile, della prevenzione e della difesa fitosanitaria o con funzione protettiva e/o preventiva nei confronti del dissesto idrogeologico (es. sistemazione del terreno e la regimazione delle acque);

- diversificazione dell’attività aziendale;
- modalità innovative o poco diffuse di organizzazione delle filiere produttive e sviluppo di nuove opportunità commerciali (compresa la filiera corta) e nel campo della conservazione e trasformazione.

<table>
<thead>
<tr>
<th>MISURA M04 - Investimenti in immobilizzazioni materiali (Art. 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La misura persegue principalmente l’obiettivo di stimolare la competitività del settore agricolo e forestale. Essa nel suo complesso ha anche un effetto indiretto sulla realizzazione di uno sviluppo territoriale equilibrato delle economie e comunità rurali, compresi la creazione e il mantenimento di posti di lavoro.</td>
</tr>
<tr>
<td>La misura concorre ai seguenti obiettivi trasversali:</td>
</tr>
<tr>
<td>- Innovazione: Gli interventi previsti concorrono a migliorare l’efficienza e la competitività delle filiere produttive e la qualità dei prodotti agroalimentari.</td>
</tr>
<tr>
<td>- Ambiente: Gli investimenti produttivi di cui alle sottomisure 04.01, 04.02 e 04.03 sostengono anche il miglioramento delle prestazioni ambientali delle aziende attraverso risparmio idrico, efficienza energetica, riduzione di emissioni inquinanti, difesa del suolo dall’erosione e riutilizzo di scarti e sottoproducti.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOTTOMISURA M4.01 SUPPORTO AGLI INVESTIMENTI NELLE AZIENDE AGRICOLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di intervento</td>
</tr>
<tr>
<td>Il tipo di operazione persegue l’obiettivo di:</td>
</tr>
<tr>
<td>• migliorare l’efficienza economica aziendale;</td>
</tr>
<tr>
<td>• accrescere il valore aggiunto aziendale tramite la trasformazione in azienda e la vendita diretta in azienda dei prodotti aziendali;</td>
</tr>
<tr>
<td>• migliorare le prestazioni ambientali aziendali con particolare riferimento a risparmio idrico, energetico, riduzione delle emissioni inquinanti, difesa del suolo dall’erosione;</td>
</tr>
<tr>
<td>• miglioramento delle condizioni di sicurezza del lavoro.</td>
</tr>
<tr>
<td>Sono ammissibili le spese relative ad investimenti finalizzati alla produzione di energia elettrica o termica da destinarsi esclusivamente all’utilizzo aziendale, attraverso lo sfruttamento di fonti energetiche rinnovabili (solare, eolico) e/o di biomasse solo derivanti da sottoproducti e/o residui, di origine prevalentemente aziendale, derivanti dalla lavorazione di prodotti agricoli e forestali.</td>
</tr>
<tr>
<td>I suddetti impianti devono essere commisurati alle esigenze energetiche, su base annuale, relative ai cicli produttivi agricoli dell’azienda agricola interessata. È escluso qualsiasi sostegno alla produzione di biocombustibili derivanti da produzione agricola dedicata.</td>
</tr>
<tr>
<td>La produzione di energia è limitata ai combustibili derivanti da scarti aziendali o di origine locale, al fine di minimizzare le necessità di trasporto, e derivanti altresì da una gestione attiva delle foreste, in modo da favorire l’avvio di filiere corte. Gli impianti funzionanti a biomasse dovranno sfruttare scarti di produzione agricola, agro-industriale o forestale locale, minimizzando le necessità di trasporto. Con il termine “locale” si intende una distanza di non più di 70 km tra il luogo di produzione e il luogo di utilizzo;</td>
</tr>
<tr>
<td>Gli investimenti in impianti per la produzione di energia, il cui principale obiettivo è la familiari.</td>
</tr>
<tr>
<td>Sono beneficiari del sostegno dell’operazione:</td>
</tr>
<tr>
<td>• Prestatori di Servizi di trasferimento di conoscenze e informazioni, selezionati mediante una procedura ad evidenza pubblica e aperta;</td>
</tr>
</tbody>
</table>
| • Regione Liguria, direttamente o tramite i propri enti strumentali (in house) per l’azione “visite ad aziende agricole e forestali”.

Sono beneficiari del sostegno dell’operazione le imprese agricole singole e associate.
produzione di energia elettrica dalle biomasse sono ammissibili al sostegno solo se è utilizzata una percentuale di energia termica pari almeno al 40%, ai sensi dell’articolo 13 del regolamento di esecuzione (UE) n. 807/2014 della Commissione.

<table>
<thead>
<tr>
<th>SOTTOMISURA M04.02 SUPPORTO AGLI INVESTIMENTI NELLA TRASFORMAZIONE, COMMERCIALIZZAZIONE E SVILUPPO DEI PRODOTTI AGRICOLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di intervento</td>
</tr>
</tbody>
</table>
| Il tipo di operazione persegue l’obiettivo di:
- migliorare l’efficienza della filiera, con particolare riferimento alla creazione o consolidamento di sbocchi di mercato stabili e duraturi per i produttori del prodotto di base;
- migliorare l’efficienza economica aziendale;
- migliorare le prestazioni ambientali aziendali con particolare riferimento a risparmio idrico, energetico, riduzione delle emissioni inquinanti, riutilizzo degli scarti e dei sottoprodotti;
- migliorare le condizioni di sicurezza del lavoro;
- favorire l’adesione a sistemi di qualità certificata in base a norme europee, nazionali e regionali di cui alla misura 3.1. | Sono beneficiarie del sostegno dell’operazione le imprese che trasformano e commercializzano i prodotti agricoli di cui all’Allegato I del Trattato sul Funzionamento dell’Unione Europea (TFUE). |

Sono ammissibili gli investimenti finalizzati alla produzione di energia elettrica o termica da destinarsi esclusivamente all’utilizzo aziendale, attraverso lo sfruttamento di fonti energetiche rinnovabili: solare, eolico o di biomasse solo derivanti da sottoprodotti derivanti dalla trasformazione, prevalentemente aziendale, di prodotti agricoli o forestale.
Gli impianti devono essere commisurati alla dimensione dell’azienda e alle esigenze energetiche relative ai cicli produttivi su base annuale. E’ escluso qualsiasi sostegno per impianti che utilizzi biocombustibili derivanti da produzione agricola dedicata. Limitatamente agli investimenti il cui principale obiettivo è la produzione di energia elettrica, questi sono ammissibili al sostegno solo se è utilizzata una percentuale di energia termica pari almeno al 40%, ai sensi dell’articolo 13 del regolamento di esecuzione (UE) n. 807/2014 della Commissione.

<table>
<thead>
<tr>
<th>MISURA M06 – Sviluppo delle aziende agricole e delle imprese (Art. 19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La misura persegue l’obiettivo di realizzare uno sviluppo territoriale equilibrato delle economie e comunità rurali, compresi la creazione e il mantenimento di posti di lavoro. Essa ha un ruolo molto importante nel rivitalizzare le aree rurali della Liguria integrando diversi settori e attività. La misura contribuisce al raggiungimento degli obiettivi trasversali relativi all’innovazione e ai cambiamenti climatici attraverso il finanziamento di caldaie a biomasse e relative reti di distribuzione del calore che incentivano l’utilizzo razionale di biomasse forestali con effetti benefici sull’equilibrio idro-geologico e sul sequestro del carbonio. Anche il ricambio generazionale nel settore agricolo e forestale, che porta nuove energie e maggiore predisposizione al cambiamento, contribuisce all’innovazione.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOTTOMISURA M06.02 AIUTO ALL’AVVIO DI IMPRESE PER ATTIVITÀ NON AGRICOLE IN AREE RURALI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di intervento</td>
</tr>
</tbody>
</table>
| La tipologia di operazione consiste nel sostegno:
- all’avvio di nuove attività nel settore forestale;
- all’avvio di nuove attività di servizi alla persona. | Per l’avvio di nuove attività nel settore forestale:
- persone fisiche;
- micro e piccole imprese, comprese le imprese agricole. |

Il sostegno è limitato all’avvio di nuove micro o piccole imprese. La tipologia di operazione è operativa esclusivamente nelle aree rurali intermedie (aree C) e nelle aree rurali con problemi di sviluppo (aree D) come definite dall’Accordo di Partenariato alla Sezione 1A - capitolo 1.1.4 “sfide territoriali”. La localizzazione della nuova attività, al fine di garantire la stabilità dell’operazione finanziata e un concreto sviluppo delle zone rurali, deve avvenire con le seguenti specifiche:
- in caso di impresa individuale, il titolare, al momento della concessione dell’aiuto, deve essere residente in una zona rurale della regione Liguria. La
L’operazione intende favorire la creazione o lo sviluppo di piccole imprese nelle zone rurali, con i seguenti obiettivi:
- creare o stabilizzare posti di lavoro;
- favorire lo sviluppo di imprese forestali;
- favorire la produzione di energia termica a partire da biomasse forestali di origine locale (approvvigionamento della biomassa in un raggio di 70 Km).

L’operazione riguarda quindi la produzione di energia termica a partire da biomasse forestali di origine locale. Sono ammissibili i costi relativi a:
- acquisto e installazione di caldaie a biomassa, compresi i manufatti edili necessari, per la produzione di energia termica di potenza non superiore a 5 MW termici;
- realizzazione della rete di distribuzione del calore.

Ai fini di ridurre l’impatto ambientale il sostegno è limitato agli impianti che possono garantire un approvvigionamento della biomassa in un raggio di 70 Km. La tipologia di operazione è operativa esclusivamente nelle aree rurali intermedie (area C) e nelle aree rurali con problemi di sviluppo (area D), come definite dall’Accordo di Partenariato alla Sezione 1A - capitolo 1.1.4 "sfide territoriali".

Sono beneficiari del sostegno dell’operazione Micro e Piccole Imprese aventi sede nelle zone rurali C e D della Liguria con esclusione delle aziende agricole.

MISURA M08 – Investimenti nello sviluppo delle aree forestali e nel miglioramento della redditività delle foreste (articoli da 21 a 26)

La misura persegue gli obiettivi individuati nella strategia forestale dell’UE [...] e in particolare:
- sostiene le comunità rurali e crea condizioni di maggiore sicurezza per quelle urbane, tramite le operazioni connesse alla prevenzione dei danni da incendio o altri fattori perturbativi ed al ripristino del potenziale forestale danneggiato;
- promuove la competitività e la sostenibilità delle attività legate al settore forestale [...], nonché dell’utilizzo della energia derivante dalle biomasse di origine forestale, sostenendo gli investimenti in tecnologie forestali;
- favorisce l’adattamento delle foreste ai cambiamenti climatici e migliora la resilienza degli ecosistemi forestali [...], ma consente altresì di attenuare i cambiamenti stessi favorendo la migliore valorizzazione delle risorse forestali per il sequestro del carbonio [...] e promuovendo contestualmente la valorizzazione energetica della frazione di biomassa derivata meno interessante per altri usi;
- migliora i servizi eco sistemici svolti dalle foreste, proprio perché stimola e crea favorevoli condizioni economiche per
attivare (o meglio ri-attivare) la gestione delle aree forestali liguri [...];

• incentiva il ricorso alla pianificazione della gestione delle foreste, quale strumento di ausilio alle imprese per ottimizzare, nel tempo e nello spazio, gli interventi gestionali in un’ottica di sostenibilità.

La misura sostiene investimenti a carattere strutturale (sul bosco e per le imprese) e infrastrutturale, finalizzati a valorizzare pienamente il carattere multifunzionale delle foreste, ossia la loro capacità di fornire contemporaneamente beni e servizi e conseguentemente produrre valore economico e positive ricadute per l’ambiente e la società.

<table>
<thead>
<tr>
<th>SOTTOMISURA M08.06 INVESTIMENTI IN TECNOLOGIE FORESTALI, TRASFORMAZIONE, MOVIMENTAZIONE E COMMERCIALIZZAZIONE DEI PRODOTTI DELLE FORESTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di intervento</td>
</tr>
<tr>
<td>L’operazione persegue due obiettivi principali: 3. incrementare il valore aggiunto dei prodotti forestali attraverso l’organizzazione e l’innovazione delle relative filiere. Sono pertanto previsti investimenti in macchine, attrezzature, strutture e infrastrutture per la raccolta, stoccaggio, assortimentazione, prima trasformazione e commercializzazione dei prodotti delle filiere forestali, ivi compresi i prodotti forestali non legnosi. Gli investimenti connessi all’uso del legno come materia prima o come fonte di energia sono limitati all’insieme delle attività che precedono la trasformazione industriale dei prodotti [...]. 4. ottenere una adeguata valorizzazione economica dei soprassuoli forestali; il sostegno è in questo caso relativo ad interventi selvicolturali di tipo straordinario (una tantum) volti alla produzione di assortimenti legnosi più remunerativi e alla realizzazione o adeguamento di idonee piste forestali trattorabili (ossia tracciati a fondo naturale, ordinariamente senza massicciata) interne all’azienda forestale, che consentono di innalzare il valore di macchiato dei prodotti favorendone l’utilizzo di mezzi che diminuiscono i costi di esbosco. Gli investimenti diretti ad accrescere il valore economico della foresta sono motivati in relazione ai previsti miglioramenti delle foreste in una o più aziende. Gli investimenti funzionali alla valorizzazione energetica delle biomasse forestali, dovranno essere limitati ad impianti di potenza non superiore a 1 MW complessivo.</td>
</tr>
</tbody>
</table>
| • Soggetti privati proprietari, detentori o gestori di aree forestali
• Comuni
• PMI operanti nel settore forestale |

<table>
<thead>
<tr>
<th>MISURA M09 – Costituzione di associazioni e organizzazioni di produttori (Art. 27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La misura 9, attuata in Regione Liguria con esclusivo riferimento al settore forestale, persegue l’obiettivo di favorire la costituzione di gruppi di produttori nel settore al fine di migliorare la loro posizione negoziale nelle filiere dei prodotti forestali e la loro interazione con le imprese impegnate in altre fasi delle filiere. Inoltre realizza uno sviluppo territoriale equilibrato delle economie e comunità rurali, compresa la creazione e il mantenimento di posti di lavoro, ed una più efficace gestione delle aree forestali, funzionale alla gestione sostenibile delle risorse naturali e all’azione per il clima.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOTTOMISURA M09.01 COSTITUZIONE DI ASSOCIAZIONI E ORGANIZZAZIONI DI PRODUTTORI NEI SETTORI AGRICOLO E FORESTALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo di intervento</td>
</tr>
</tbody>
</table>
| Le finalità cui devono tendere i gruppi di produttori oggetto dell’operazione sono le seguenti:
• Adeguare la produzione dei soci membri del gruppo alle esigenze del mercato (es. materiale certificato, materiale legnoso a “filiera corta”);
• Commercializzare in comune i prodotti, incluso il condizionamento per la vendita, la vendita centralizzata e la fornitura a grossisti (es. fornitura di cippato a centrali di cogenerazione [...]);
• Definire norme comuni in materia di informazioni sulla produzione, con |
| La misura è destinata a gruppi di produttori, ufficialmente riconosciuti dalla Regione sulla base di un piano aziendale; i produttori devono essere PMI. Non possono essere concessi aiuti a:
b) organizzazioni, enti o organi di produzione, come imprese o |

#
particolare riguardo ai prelievi forestali e alla disponibilità di prodotti; Svolgere altre attività che possono essere di supporto ai soci produttori come lo sviluppo delle competenze imprenditoriali e commerciali e l’organizzazione di processi innovativi.

cooperative, il cui obiettivo sia la gestione di una o più aziende forestali e che quindi costituiscano di fatto singoli produttori; associazioni i cui soci non siano produttori forestali.

MISURA M16 – Cooperazione (Art. 35)

La misura 16 ha l’obiettivo di incentivare rapporti di cooperazione tra almeno due soggetti diversi (imprese, enti pubblici, istituti di ricerca, professionisti, ONG, associazioni di produttori, cooperative, organizzazioni interprofessionali, eccetera) per:

- la costituzione e la gestione dei Gruppi operativi del Partenariato europeo per l’innovazione (PEI);
- la realizzazione di progetti, approcci o attività comuni attraverso la costituzione di specifici partenariati.

Si tratta pertanto di una misura di tipo metodologico, che ha come obiettivo quello di favorire la cooperazione e le aggregazioni per introdurre, sviluppare e diffondere le innovazioni e le conoscenze nel settore agricolo, forestale e nelle zone rurali, promuovere la filiera corta, i mercati locali e l’agricoltura sociale e attuare progetti agroambientali.

SOTTOMISURA M16.02 SUPPORTO PER PROGETTI PILOTA E PER LO SVILUPPO DI NUOVI PRODOTTI, PRATICHE, PROCESSI E TECNOLOGIE

<table>
<thead>
<tr>
<th>Tipo di intervento</th>
<th>Destinatari (gruppi obiettivo) e Beneficiari</th>
</tr>
</thead>
</table>
| L’operazione finanzia la realizzazione di progetti di cooperazione, finalizzati all’introduzione di innovazioni per la riduzione dei costi produttivi e dei consumi energetici e idrici, alla sostenibilità ambientale, alla mitigazione e adattamento dei cambiamenti climatici e orientati al miglioramento della sostenibilità economica e ambientale della filiera. Rientrano nell’ambito dei progetti di cooperazione:
- azioni pilota, di durata non superiore a 24 mesi, per collaudare, validare (test) e dimostrare un’innovazione. Tale intervento consente di verificare e collaudare l’applicabilità delle innovazioni già messe a punto dalla ricerca o in fase sperimentale, ma ancora da contestualizzare nelle realtà produttive, territoriali e ambientali liguri;
- azioni di sviluppo precompetitivo (sperimentale), di durata non superiore a 5 anni, di nuovi processi, pratiche, tecnologie, prodotti o servizi nuovi o migliorati, prima dell’immissione sul mercato.
Sono finanziabili progetti relativi all’introduzione e sviluppo delle seguenti innovazioni prioritarie:
- strategie di coltivazione, di allevamento e di gestione forestale, compreso l’utilizzo di fonti rinnovabili e la meccanizzazione conservativa e di precisione;
- strategie di difesa, di controllo e di lotta fitosanitaria, compreso il diserbo e la disinfezione del terreno, individuazione di nuovi principi attivi e estensione etichetta di prodotti fitosanitari;
- strategie di sistemi e processi organizzativi, logistici, distributivi e commerciali;
- strategie di trasformazione, di conservazione, di condizionamento e confezionamento, degli standard quantitativi e qualitativi delle produzioni e dell’alimentazione e del benessere animale. | I beneficiari, denominato gruppo di cooperazione, sono forme di aggregazione (es. Associazioni temporanee, reti d’impresa) e/o i suoi componenti coinvolti nelle attività previste nel progetto di cooperazione. Possono fare parte della cooperazione i seguenti soggetti:
- imprenditori agricoli e operatori forestali, singoli e associati;
- università, centri e istituti di ricerca, pubblici e privati;
- distretti (par partenariato pubblico/privato espressione di filiera produttiva ai sensi del D Lgs 228/01);
- Regione Liguria, tramite le proprie strutture specialistiche o propri Enti strumentali (in house);
- prestatori di servizi, riconosciuti dalla Region, di cui alla misura 1 e 2 per le attività di consulenza e formazione;
- altri soggetti che sono necessari e rilevanti per l’attuazione del progetto. |

Tabella 83 - Dettaglio del tipo di investimento e dei beneficiari relativi agli elementi del PSR 2014-2020 correlati al sostegno al settore della Green economy in Liguria
6.7. La ricerca e lo sviluppo nel settore energetico in Liguria

La Regione Liguria si è dotata nel 2007 di una Legge Quadro (LR n. 2/2007 “Promozione, sviluppo, valorizzazione della ricerca, dell’innovazione e delle attività universitarie e di alta formazione”), nella quale sono definiti gli obiettivi in materia di ricerca ed innovazione, di supporto alle attività dell’Università di Genova e dei centri di ricerca pubblici localizzati sul territorio regionale e le iniziative finalizzate all’innovazione del sistema imprenditoriale ligure ed alle sue collaborazioni con il sistema della ricerca e dell’alta formazione.

La suddetta Legge (Titolò II art. 5) prevede che il Consiglio Regionale, su proposta della Giunta, si dotti di un Programma triennale di sviluppo e sostegno all’Università, alla ricerca ed all’innovazione nel quale sono definiti gli obiettivi strategici da raggiungere e definisce le linee generali di intervento, tenendo conto in particolare della programmazione relativa alla ricerca in ambito sanitario.

Il primo Programma Triennale 2008-2011 ha individuato, tra gli altri, quale obiettivo strategico, la realizzazione di piattaforme tecnologiche ancorate al territorio, con caratteristiche “abilitanti” rispetto alle diverse possibili applicazioni, che divengano uno strumento per promuovere la formazione di nodi e di reti diffuse sul territorio in grado di favorire le collaborazioni ed il trasferimento di tecnologie e conoscenze dal mondo della ricerca alle imprese.

Le Piattaforme Tecnologiche sono definite nel Programma Triennale come contesti tematici che generano reti di opportunità; esse consentono di indirizzare gli sforzi di ricerca e di innovazione su aree di specifico interesse regionale, sia per lo sviluppo dell’esistente, che per l’individuazione di nuove filiere che, sebbene riconosciute importanti e di valore strategico, ancora non sono sufficientemente presenti o consolidate all’interno del tessuto regionale.

Dal punto di vista tematico sono state individuate nel Programma, in via preliminare, le seguenti aree tematiche prioritarie, declinate al loro interno in specifiche tecnologie e ambiti applicativi:

- Piattaforma Nuove tecnologie per l’Ambiente e la Protezione Civile
- Piattaforma Ambient Intelligent e Automazione intelligente
- Piattaforma Energia in Liguria
- Piattaforma Scienze della Vita, Biotecnologie e Applicazioni Sicure
- Piattaforma Automazione, Supervisione, Sicurezza nei trasporti e nella logistica
- Piattaforma Tecnologie del mare e ambiente marino
- Piattaforma Nuove tecnologie per la sanità
- Piattaforma Infrastrutture a banda larga e Nuove applicazioni in Telecomunicazioni e Informatizzazione Diffusa

Nel corso del triennio 2008-2011 si è proseguito con la fase di analisi e pianificazione fino ad arrivare all’individuazione di priorità tematiche all’interno delle Piattaforme che hanno condotto alla creazione ed al consolidamento di specifici “Cluster” tematici quali i Distretti Tecnologici ed i Poli di Ricerca ed Innovazione su cui Regione Liguria ha nel tempo indirizzato le risorse e attraverso le quali è stata realizzata la rete della ricerca e innovazione del territorio regionale.

Per quanto attiene i Distretti Tecnologici sono attualmente attivi sul territorio regionale due realtà ormai consolidate:

- Il Distretto SIIT (Sistemi Intelligenti Integrati) [http://www.siitscpa.it/]
- Il Distretto DLTM (Distretto Ligure delle Tecnologie marine) [http://www.dltm.it/]

Nel corso del 2010 si è dato altresì avvio alla realizzazione dei Poli di Ricerca e Innovazione liguri attraverso il Bando Regionale per la costituzione, l’ampliamento ed il funzionamento per l’animazione di Poli di Ricerca e Innovazione.

Gli otto Poli di Ricerca ed Innovazione liguri si sono costituiti ed hanno iniziato ad operare nel corso del 2011. Due di questi sono specificatamente dedicati alla realizzazione di progetti di ricerca, sviluppo ed alta formazione alla promozione dell’innovazione nei settori dell’energia.

In particolare i due Poli costituitisi nell’ambito della Piattaforma Energia sono:

- Polo Energia Sostenibile [http://www.poloes.it/]

#
Polo Ticass [http://www.ticass.it/]

A partire da questo scenario, il Programma Triennale 2012-2014, coerentemente con gli indicatori socio economici della Regione Liguria e con la necessità di implementare la *Smart Specialisation Strategy* regionale, ha confermato la necessità di consolidare la rete dei Distretti e dei Poli di Ricerca ed Innovazione e di concentrare le risorse regionali sullo sviluppo di programmi di ricerca e di alta formazione che risultassero coerenti con i programmi strategici di tali aggregazioni ed ampliando le stesse ad un maggior numero di attori del territorio (non solo enti di ricerca e imprese ma anche *end users*) per rendere ancor più connesse le attività di ricerca dei Poli e dei Distretti con gli effettivi bisogni del territorio.

In linea con queste previsioni sono state implementate numerose azioni di sostegno alla ricerca, allo sviluppo ed all’alta formazione indirizzate su tematiche coerenti con i piani strategici dei Poli stessi.

Nel contempo si è proseguito con l’attività di pianificazione che sta conducendo alla definizione della “Smart Specialisation Strategy” regionale la quale individua i macro settori prioritari per il territorio in materia di R&S e, per ciascuno di essi, le tecnologie abilitanti su cui si intende investire nel medio periodo con particolare riferimento ai bandi della prossima programmazione 2014-2020.

In sintesi, la Smart Specialisation Strategy individua tre aree prioritarie per la Regione:

1. **Qualità della vita nel territorio**
 - *Smart mobility*: mobilità sostenibile, infomobilità, logistica, ecc.
 - *Smart Environment*: produzione e distribuzione di energia, efficienza energetica, tecnologie per il contenimento dell’impatto ambientale delle fonti fossili, ecc.
 - *Factories of the future*: sviluppo e integrazione di tecnologie abilitanti (ICT, materiali avanzati, ecc.) per l’ottimizzazione e la sostenibilità di processi industriali, ecc.
 - *Sicurezza e monitoraggio del territorio*: prevenzione e gestione di disastri naturali ed emergenze, sicurezza del cittadino e delle infrastrutture, ecc.

2. **Salute e scienze della vita**
 - *Farmaci e approcci terapeutici innovativi*: medicina personalizzata, terapie cellulari, nanomedicina, biomateriali, ecc.
 - *Sistemi diagnostici*: biomarcatori, metodi e dispositivi diagnostici non invasivi, metodi diagnostici *in vitro* ed *ex vivo*, sistemi di diagnosi per immagini, ecc.
 - *Tecnologie per la riabilitazione e l’assistenza*: “e-health”, apparati per la riabilitazione, tecnologie e dispositivi per l’ausilio a pazienti con disabilità, ecc.

3. **Tecnologie del mare**
 - *Tecnologie marittime*: cantieristica navale, nautica da diporto, strumentazioni per applicazioni navali e subacquee, ecc.
 - *Tutela e valorizzazione dell’ambiente marino-costiero*: sistemi per il monitoraggio, la sicurezza e la bonifica dell’ambiente marino, ecc.
 - *Logistica, sicurezza e automazione nelle aree portuali*: Intelligent transport systems, sicurezza, tecnologie ICT per la logistica, ecc.

Il tema dell’energia è ovviamente trasversale e trova rilevanza in tutte le aree ma trova una specifica definizione all’interno dell’area “qualità della vita nel territorio”.

In questo ambito, grande rilevanza assume l’attività di ricerca condotta all’interno dei due Poli che operano nel settore Energia (Ticass ed Energia Sostenibile)\(^5\).

\(^5\) Nel 2016 è stato presentato il nuovo assetto dei Poli di Ricerca e Innovazione della Regione Liguria nell’ambito della programmazione economica regionale 2014-2020; i poli passano da 8 a 5 (Automazione e Sicurezza, Energia ed Ambiente, Logistica e Trasporti, Scienze della Vita, Tecnologie del Mare ed Ambiente Marino). La finalità primaria dei Poli rimane quella di sostenere i progetti di ricerca delle imprese, configurandosi come i soggetti intermediari dell’innovazione capaci di mettere in relazione strutture di ricerca, piccola, media e grande imprese. Il tema energetico, seppur mantenendo il suo approccio trasversale, risulta definito specificatamente nel Polo Energia ed Ambiente.
Azioni per lo sviluppo della ricerca nel settore dell’energia
La Regione Liguria nei prossimi anni proseguirà il percorso avviato, sostenendo progetti di ricerca ed innovazione ad alto contenuto tecnologico sui temi dell’efficienza energetica e delle fonti rinnovabili e con particolare riferimento ai settori individuati dalla Smart Specialisation Strategy regionale, con il supporto dei poli di ricerca ed innovazione operanti nei settori di riferimento.
La Regione Liguria a tal fine metterà a disposizione risorse a valere sulla programmazione dei fondi POR FESR 2014-2020 (Tabella 84 e Tabella 85) e POR FSE 2014-2020 (Tabella 86 e Tabella 87).

<table>
<thead>
<tr>
<th>POR-FESR 2014-2020</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Asse</td>
<td>Obiettivo Tematico</td>
</tr>
<tr>
<td>1 RICERCA E INNOVAZIONE</td>
<td>01 Rafforzare la ricerca, lo sviluppo tecnologico e l’innovazione</td>
</tr>
<tr>
<td></td>
<td>1b Promuovere gli investimenti delle imprese in R&I sviluppando collegamenti e sinergie tra imprese, centri di ricerca e sviluppo e il settore dell’istruzione superiore, in particolare promuovendo gli investimenti nello sviluppo di prodotti e servizi, il trasferimento di tecnologie, l’innovazione sociale, l’ecoinnovazione, le applicazioni nei servizi pubblici, lo stimolo della domanda, le reti, i cluster e l’innovazione aperta attraverso la specializzazione intelligente, nonché sostenere la ricerca tecnologica e applicata, le linee pilota, le azioni di validazione precoce dei prodotti, le capacità di fabbricazione avanzate e la prima produzione, soprattutto in tecnologie chiave abilanti, e la diffusione di tecnologie con finalità generali</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella 84 - Elementi del POR FESR 2014-2020 correlati allo sviluppo della ricerca nel settore energetico

<table>
<thead>
<tr>
<th>POR-FESR 2014-2020</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSE 1 - RICERCA</td>
<td></td>
</tr>
<tr>
<td>O.T. 01 – Rafforzare la ricerca, lo sviluppo tecnologico e l’innovazione</td>
<td></td>
</tr>
<tr>
<td>Priorità di investimento</td>
<td>Obiettivo Specifico</td>
</tr>
</tbody>
</table>
1a - Potenziare l’infrastruttura per la ricerca e l’innovazione (R&I) e le capacità di sviluppare l’eccellenza nella R&I nonché promuovere centri di competenza, in particolare quelli di interesse europeo

<table>
<thead>
<tr>
<th>OS1.5</th>
<th>Potenziamento della capacità di sviluppare l’eccellenza nella R&I (Rif. RA 1.5 AP)</th>
</tr>
</thead>
</table>

1b Promuovere gli investimenti delle imprese in R&I sviluppando collegamenti e sinergie tra imprese, centri di ricerca e sviluppo e il settore dell’istruzione superiore, in particolare promuovendo gli investimenti nello sviluppo di prodotti e servizi, il trasferimento di tecnologie, l’innovazione sociale, l’ecoinnovazione, le applicazioni nei servizi pubblici, lo stimolo della domanda, le reti, i cluster e l’innovazione aperta attraverso la specializzazione intelligente, nonché sostenere la ricerca tecnologica e applicata, le linee pilota, le azioni di validazione precoce dei prodotti, le capacità di fabbricazione avanzate e la prima produzione, soprattutto in tecnologie chiave abilitanti, e

<table>
<thead>
<tr>
<th>OS1.1</th>
<th>Incremento dell’attività di innovazione delle imprese (Rif. RA 1.1 AP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS1.2</td>
<td>Rafforzamento del sistema innovativo regionale e nazionale (Rif. RA 1.2 AP)</td>
</tr>
</tbody>
</table>

| OS1.3 | Sostegno alla valorizzazione economica dell’innovazione attraverso la sperimentazione e l’adozione di soluzioni innovative nei processi, nei prodotti e nelle formule organizzative, nonché attraverso il finanziamento dell’industrializzazione dei risultati della ricerca (rif. Azione 1.1.3 AP) |

Tipologie indicative di beneficiari: Imprese in forma aggregata, organismi di ricerca e Università. Le grandi imprese sono ammissibili a finanziamento nell’ambito dell’OT1 esclusivamente in riferimento allo sviluppo di progetti di effettiva ricerca e innovazione industriale e alla sperimentazione dell’industrializzazione dei risultati da essi derivanti; lo sfruttamento industriale dei risultati della ricerca per la produzione di prodotti standardizzati (prodotti di massa) attraverso l’utilizzo di tecnologie esistenti non è invece ammissibile a finanziamento nell’ambito dell’OT1.
Supporto alla realizzazione di progetti complessi di attività di ricerca e sviluppo su poche aree tematiche di rilievo e all’applicazione di soluzioni tecnologiche funzionali alla realizzazione delle strategie di S3 (rif. Azione 1.2.4 AP)

Imprese, singole o in forma aggregata, Distretti Tecnologici, Laboratori pubblico-privati di ricerca; Poli di Innovazione, cluster e Reti di impresa. Le grandi imprese sono ammissibili a finanziamento nell’ambito dell’OT1 esclusivamente in riferimento allo sviluppo di progetti di effettiva ricerca e innovazione industriale e alla sperimentazione dell’industrializzazione dei risultati da essi derivanti; lo sfruttamento industriale dei risultati della ricerca per la produzione di prodotti standardizzati (prodotti di massa) attraverso l’utilizzo di tecnologie esistenti non è invece ammissibile a finanziamento nell’ambito dell’OT1.

Tabella 85 - Dettaglio delle priorità di investimento, degli obiettivi specifici, delle azioni e dei beneficiari relativi agli elementi del POR FESR 2014-2020 correlati allo sviluppo della ricerca nel settore energetico

<table>
<thead>
<tr>
<th>Asse</th>
<th>Obiettivo Tematico</th>
<th>Priorità</th>
<th>Obiettivo Specifico</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ISTRUZIONE E FORMAZIONE</td>
<td>10 Investire nell’istruzione, nella formazione e nella formazione professionale per le competenze e l’apprendimento permanente</td>
<td>10ii Migliorare la qualità e l’efficacia dell’istruzione superiore e di livello equivalente e l’accesso alla stessa, al fine di aumentare la partecipazione e i tassi di riuscita specie per i gruppi svantaggiati</td>
<td>10 Innalzamento dei livelli di competenze, di partecipazione e di successo formativo nell’istruzione universitaria e/o equivalente (10.5)</td>
</tr>
<tr>
<td></td>
<td>10iv Migliorare la pertinenza dei sistemi di istruzione e formazione al mercato del lavoro, favorendo il passaggio dall’istruzione al mondo del lavoro e rafforzando i sistemi di istruzione e formazione professionale nonché migliorandone la qualità, anche mediante meccanismi di anticipazione delle capacità, l’adeguamento dei curriculum e l’introduzione e lo sviluppo di programmi di apprendimento basati sul lavoro, inclusi i sistemi di apprendimento duale e i programmi di apprendistato</td>
<td>12 Qualificazione dell’offerta di istruzione e formazione tecnica e professionale (10.6)</td>
<td></td>
</tr>
</tbody>
</table>
ASSE 3 - ISTRUZIONE E FORMAZIONE

O.T. 10 – Investire nell’istruzione, nella formazione e nella formazione professionale per le competenze e l’apprendimento permanente

<table>
<thead>
<tr>
<th>Priorità di investimento</th>
<th>Obiettivo Specifico</th>
<th>Azioni</th>
<th>Beneficiari</th>
</tr>
</thead>
<tbody>
<tr>
<td>10ii- Migliorare la qualità e l’efficacia dell’istruzione superiore e di livello equivalente e l’accesso alla stessa, al fine di aumentare la partecipazione e i tassi di riuscita specie per i gruppi svantaggiati</td>
<td>10 - Innalzamento dei livelli di competenze, di partecipazione e di successo formativo nell’istruzione universitaria e/o equivalente (10.5)</td>
<td>• Potenziamento dei percorsi di ITS(^6), rafforzandone l’integrazione con i fabbisogni espressi dal tessuto produttivo (10.5.3), • Interventi per l’internazionalizzazione dei percorsi formativi e per l’attrattività internazionale degli istituti di istruzione universitaria o equivalente, con particolare attenzione alla promozione di corsi di dottorato inseriti in reti nazionali e internazionali, nonché coerenti con le linee strategiche del Piano Nazionale della Ricerca (10.5.6), • Azioni per il rafforzamento dei percorsi di istruzione universitaria o equivalente post-lauream, volte a promuovere il raccordo tra istruzione terziaria, il sistema produttivo, gli istituti di ricerca, con particolare riferimento ai dottorati in collaborazione con le imprese e/o enti di ricerca in ambiti scientifici coerenti con le linee strategiche del PNR e della Smart specialisation regionale (10.5.12).</td>
<td>I principali gruppi target delle azioni cofinanziate per il perseguimento dell’Obiettivo specifico della priorità di investimento 10ii sono: i giovani e gli adulti. In termini di condizione sul Mdl, si configurano quali principali gruppi di destinatari gli inoccupati, i disoccupati e gli occupati in possesso di un diploma di insegnamento secondario superiore e/o di un diploma di istruzione terziaria. I principali beneficiari delle azioni cofinanziate per il perseguimento degli Obiettivi specifici della priorità di investimento 10ii sono l’Università, i centri di ricerca, gli organismi formativi accreditati, le istituzioni del sistema educativo, i soggetti titolati all’erogazione di servizi per il lavoro, le imprese, la Regione Liguria, i suoi enti strumentali e gli enti locali per quanto eventualmente di rispettiva competenza.</td>
</tr>
</tbody>
</table>

\(^6\) In Liguria sono presenti quattro ITS, nati a partire dal 2011, come offerta alternativa all’Università e sono finalizzati a formare tecnici altamente specializzati nelle aree tecnologiche strategiche per il territorio (“Mobilità sostenibile nei settori dei trasporti marittimi e della pesca”, “ICT”, “Nuove tecnologie nel settore meccanico/naumecanico, cantieristica e nautica da diporto” e “Efficienza energetica”)

Gli ITS si costituiscono secondo la forma della Fondazione di partecipazione che comprende scuole, enti di formazione, imprese, università, centri di ricerca e enti locali.
<table>
<thead>
<tr>
<th>10 iv - Migliorare la pertinenza dei sistemi di istruzione e formazione al mercato del lavoro, favorendo il passaggio dall'istruzione al mondo del lavoro e rafforzando i sistemi di istruzione e formazione professionale nonché migliorandone la qualità, anche mediante meccanismi di anticipazione delle capacità, l'adeguamento dei curriculum e l'introduzione e lo sviluppo di programmi di apprendimento basati sul lavoro, inclusi i sistemi di apprendimento duale e i programmi di apprendistato.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 - Qualificazione dell'offerta di istruzione e formazione tecnica e professionale (10.6)</td>
</tr>
<tr>
<td>•Azioni formative professionalizzanti connesse con i fabbisogni dei sistemi produttivi locali, e in particolare rafforzamento degli IFTS, e dei Poli tecnico professionali in una logica di integrazione e continuità con l'Istruzione e la formazione professionale iniziale e in stretta connessione con i fabbisogni espressi dal tessuto produttivo (10.6.2),</td>
</tr>
<tr>
<td>•Stage/tirocini (anche in altri Paesi), percorsi di alternanza e azioni laboratoriali (10.6.6).</td>
</tr>
<tr>
<td>I principali gruppi target delle azioni cofinanziate per il perseguimento dell'Obiettivo specifico della priorità di investimento 10iv per ambedue gli obiettivi specifici sono: i giovani e gli adulti. In termini di condizione sul MdL, si configurano quali principali gruppi di destinatari gli inoccupati, i disoccupati e gli occupati. I principali beneficiari delle azioni cofinanziate per il perseguimento degli Obiettivi specifici della priorità di investimento 10iv sono l'Università, i centri di ricerca, gli organismi formativi accreditati, le istituzioni del sistema educativo, i soggetti titolati all’erogazione di servizi per il lavoro, le imprese, la Regione Liguria, i suoi enti strumentali e gli enti locali per quanto eventualmente di rispettiva competenza.</td>
</tr>
</tbody>
</table>

Tabella 87 - Dettaglio delle priorità di investimento, degli obiettivi specifici, delle azioni e dei beneficiari relativi agli elementi del POR FSE 2014-2020 correlati allo sviluppo della ricerca nel settore energetico
6.8.II Monitoraggio del Piano - Le prestazioni energetiche

Il presente paragrafo (congiuntamente all’Allegato 3 “Piano di Monitoraggio”) intende rispondere al Parere Motivato attuando l’adeguamento e la revisione dei 3 set di indicatori (Prestazione, Descrizione ed Efficacia) originariamente presenti nel Piano di Monitoraggio del Rapporto ambientale, in termini di rappresentatività, opportunità, idoneità di scala e popolabilità.

In particolare vengono qui trattati gli Indicatori di PRESTAZIONE, quelli cioè legati strettamente alle azioni del PEAR ed alla loro performance in termini di resa tecnica, ossia riferiti al raggiungimento degli obiettivi del “Burden Sharing” (per dettagli si veda Cap. 2.2) che impone alla regione Liguria di raggiungere al 2020 il 14,1% del consumo finale da fonti rinnovabili rispetto al consumo finale lordo:

\[
\frac{\text{Consumo Finale da Fonti rinnovabili}}{\text{Consumo Finale Lordo}} = 14,1\%
\]

Alla luce della revisione e dell’adeguamento di seguito esplicitati, il sistema degli indicatori di prestazione del PEAR adeguato si suddivide in:

- 6 indicatori generali di prestazione che, in quanto legati ai “Macro Obiettivi” del PEAR, non sono variati;

Il numero degli indicatori specifici di prestazione passa da 28 a 27; si fa presente che, in particolare quelli riferiti al Macro obiettivo A “Burden Sharing”, sono necessari ai fini della definizione delle componenti numeratore (Consumo Finale da Fonti rinnovabili) e denominatore (Consumo Finale Lordo) dell’obiettivo regionale del 14,1%.

In funzione della verifica della disponibilità di dati reali ed in coerenza con quanto previsto dal monitoraggio degli strumenti di programmazione europea, rispetto alla Proposta di PEAR (Rapporto Ambientale) sono stati eliminati 3 indicatori specifici e ne sono stati aggiunti 2 tra quelli disponibili come Indicatori di output POR FESR (IP3, IP22 in Tabella 89).

Con riferimento all’analisi delle fonti di informazioni relative alla produzione energetica da fonte rinnovabile e ai consumi energetici sul territorio regionale, si evidenzia che la Regione Liguria è dotata di un proprio Sistema Informativo Regionale Ambientale (SIRAL) che rappresenta lo strumento di base per il governo integrato dei dati ambientali ed energetici ed è alimentato sia attraverso dati statistici nazionali sia da indagini dirette realizzate a livello territoriale.

Al fine di garantire la necessaria disponibilità di dati energetici regionali, dal momento che gli ultimi dati disponibili nel SIRAL risalgono al Bilancio Energetico Regionale (BER) 2011, si prevede quale specifica azione di Piano la programmazione dell’aggiornamento del modulo del SIRAL relativo al BER, da realizzarsi in fase di attuazione e di monitoraggio del PEAR 2014-2020.

Nel breve periodo potranno essere utilizzati i dati GSE, ENEA o altre banche dati nazionali, così come indicato nelle tabelle seguenti (Tabella 88 e Tabella 89), che riportano la sintesi schematica degli indicatori di prestazione del PEAR adeguato secondo le precedenti considerazioni.
INDICATORI DI PRESTAZIONE
Indicatore che definiscono il grado di cambiamento dei fenomeni dipendenti dall’azione di pianificazione

INDICATORI GENERALI DI PRESTAZIONE PER I MACRO-OBIETTIVI DEL PEAR

<table>
<thead>
<tr>
<th>Macro Obiettivi</th>
<th>Indicatore Generale di prestazione (unità di misura)</th>
<th>Target Eventuale al 2020</th>
<th>Fonte</th>
<th>Frequenza Rilevamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Burden Sharing</td>
<td>A1: Consumi finali da fonti rinnovabili [ktep]</td>
<td>373</td>
<td>SIRAL, RSA</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>L’indicatore è dato dalla somma dei valori degli indicatori I8, I10, I12, I14, I19, I21, I23 di cui alla Tabella seguente.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A2: Consumi Finali Lordi [ktep]</td>
<td>2.640</td>
<td>SIRAL, RSA</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>A3: Percentuale Burden Sharing [%]</td>
<td>14,1</td>
<td>Calcolo: A1/A2</td>
<td>biennale</td>
</tr>
<tr>
<td>C. Comunicazione</td>
<td>C1: Iniziative di comunicazione relative al PEAR (portatori di interesse, cittadini, operatori e giovani raggiunti con iniziative promosse dalla Regione Liguria, visite alle pagine specifiche del sito regionale) [numero]</td>
<td>---</td>
<td>Dipartimento Sviluppo Economico Settore - Ricerca, Innovazione ed Energia</td>
<td>biennale</td>
</tr>
</tbody>
</table>

Tabella 88- Indicatori di prestazione per i macro-obiettivi del PEAR
<table>
<thead>
<tr>
<th>Macro Obiettivi</th>
<th>Obiettivi Generali</th>
<th>Linee di Sviluppo</th>
<th>Indicatore specifico di prestazione (unità di misura)</th>
<th>Target eventuale al 2020</th>
<th>Fonte</th>
<th>Frequenza di rilevamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.G.1. Efficienza Energetica</td>
<td>EE.1</td>
<td>Ridurre i consumi energetici del settore residenziale</td>
<td>IP1: Consumo finale di energia nel settore residenziale [ktep]</td>
<td>206</td>
<td>SIRAL RSA ENEA</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>EE.2</td>
<td>Incrementare l’efficienza energetica nei settori terziario, imprese e cicli produttivi</td>
<td>IP2: Consumo finale di energia nel settore terziario [ktep]</td>
<td>126</td>
<td>SIRAL RSA ENEA</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>EE.3</td>
<td>Incrementare l’efficienza energetica del patrimonio edilizio pubblico e dell’illuminazione pubblica</td>
<td>IP3: Efficienza energetica: Diminuzione del consumo annuale di energia primaria degli edifici pubblici [kWh/anno]</td>
<td>Per questi indicatori non viene adottato un obiettivo specifico, bensì contribuiscono al raggiungimento del valore target per l’indicatore A2</td>
<td>POR FESR (C032)</td>
<td>annuale</td>
</tr>
<tr>
<td></td>
<td>EE.4</td>
<td>Favorire l’installazione di sistemi tecnologici avanzati quali impianti di cogenerazione e trigenerazione, teleriscaldamento e teleraffrescamento</td>
<td>IP5: N° impianti co/trigenerazione e teleriscaldamento/teleraffrescamento [-]</td>
<td>SIRAL RSA</td>
<td>biennale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EE.5</td>
<td>Favorire l’installazione di impianti fotovoltaici su edifici ed in aree industriali o degradate dal punto di vista ambientale e paesaggistico</td>
<td>IP6: Consumo finale di energia da co/trigenerazione e teleriscaldamento/teleraffrescamento [ktep]</td>
<td>SIRAL RSA,</td>
<td>biennale</td>
<td></td>
</tr>
<tr>
<td>O.G.2. Fonti rinnovabili (Elettriche e Termiche)</td>
<td>FER 0.1</td>
<td>Promuovere la realizzazione di impianti fotovoltaici su edifici ed in aree industriali o degradate dal punto di vista ambientale e paesaggistico</td>
<td>IP7: Potenza di pico installata [MWp]</td>
<td>220</td>
<td>SIRAL RSA</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>FER 0.2</td>
<td>Favorire l’installazione di impianti eolici attraverso la semplificazione delle procedure autorizzative</td>
<td>IP8: Consumo finale di energia da fonte solare fotovoltaica [ktep]</td>
<td>23</td>
<td>SIRAL RSA GSE</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>FER 0.3</td>
<td>Sostener l’installazione di impianti di piccola taglia nel settore idroelettrico e la riattivazione di centraline esistenti</td>
<td>IP9: Potenza installata [MWp]</td>
<td>250</td>
<td>SIRAL RSA</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>FER 0.4</td>
<td>Incrementare la produzione energetica da biogas da RSU</td>
<td>IP10: Consumo finale di energia da fonte eolare [ktep]</td>
<td>43</td>
<td>SIRAL RSA GSE</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>FER 0.5</td>
<td>Sviluppare la ricerca nei settori tecnologici correlati alle fonti rinnovabili ed all’efficienza energetica</td>
<td>IP11: Potenza installata [MWp]</td>
<td>110</td>
<td>SIRAL RSA</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>FER 0.6</td>
<td>Favorire lo sviluppo delle Smart-grid</td>
<td>IP12: Consumo finale di energia da fonte idroelettrica [ktep]</td>
<td>26</td>
<td>SIRAL RSA GSE</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>FER 0.7</td>
<td>Sostenere la diffusione di impianti a biomassa di piccola e media taglia attraverso lo sviluppo della filiera legno-energia e l’utilizzo della biomassa locale</td>
<td>IP13: Potenza installata [MWp]</td>
<td>31</td>
<td>SIRAL RSA</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>FER 0.8</td>
<td>Incrementare il ricorso alla tecnologia solare termica</td>
<td>IP14: Consumo finale di energia da fonte solare termica [ktep]</td>
<td>16</td>
<td>SIRAL RSA GSE</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>FER 1.0</td>
<td>Favorire l’installazione di impianti eolici attraverso la semplificazione delle procedure autorizzative</td>
<td>IP15: Progetti di ricerca finanziati dalla Regione Liguria con fondi POR FESR [numero]</td>
<td>---</td>
<td>Dipartimento Sviluppo Economico Settore - Ricerca, Innovazione e Ed Energia</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>FER 1.1</td>
<td>Favorire lo sviluppo delle Smart-grid</td>
<td>IP16: Reti “Smart” [numero]</td>
<td>Tendenza positiva</td>
<td>Enti locali e distributori di energia</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>FER 1.2</td>
<td>Favorire l’installazione di impianti a biomassa di piccola e media taglia attraverso lo sviluppo della filiera legno-energia e l’utilizzo della biomassa locale</td>
<td>IP17: Potenza installata [MWp]</td>
<td>1750</td>
<td>SIRAL RSA</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td>FER 1.3</td>
<td>Sostenere la diffusione di impianti a biomassa di piccola e media taglia a livello locale</td>
<td>IP18: Consumo finale di energia da biomassa [ktep]</td>
<td>181</td>
<td>SIRAL RSA GSE</td>
<td>biennale</td>
</tr>
<tr>
<td>Macro Obiettivi</td>
<td>Obiettivi Generali</td>
<td>Linee di Sviluppo</td>
<td>Indicatore specifico di prestazione (unità di misura)</td>
<td>Target eventuale al 2020</td>
<td>Fonte</td>
<td>Frequenza rilevam.</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>FER.9</td>
<td></td>
<td></td>
<td>IP20: Potenza installata [MW]</td>
<td>2100</td>
<td>SIRAL RSA</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IP21: Consumo finale di energia rinnovabile da pompe di calore [ktep]</td>
<td>79</td>
<td>SIRAL RSA GSE</td>
<td>biennale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L’indicatore, seppur specifico, si riferisce all’intero obiettivo generale O.G.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.G.3.</td>
<td>Sostegno alla competitività del sistema produttivo regionale</td>
<td></td>
<td>IP22: Capacità supplementare di produzione di energie rinnovabili da interventi finanziati attraverso fondi POR FESR [MW]</td>
<td></td>
<td>POR FESR (E230)</td>
<td>annuale</td>
</tr>
<tr>
<td>IF.1</td>
<td></td>
<td></td>
<td>IP25: Corsi attivati con il sostegno della Regione Liguria per la formazione e l’aggiornamento degli operatori di settore e per la formazione dei giovani su temi delle fonti rinnovabili e dell’efficienza energetica [numero]</td>
<td></td>
<td>REGIONE LIGURIA: Settore Ricerca, Innovazione ed Energia: Settore Sistema Regionale della Formazione</td>
<td>biennale</td>
</tr>
<tr>
<td>IF.2</td>
<td></td>
<td></td>
<td>IP26: Iniziative (seminari, tavolet convegni) promosse da Regione Liguria [numero]</td>
<td></td>
<td>REGIONE LIGURIA: Settore Ricerca, Innovazione ed Energia</td>
<td>biennale</td>
</tr>
<tr>
<td>IF.3</td>
<td></td>
<td></td>
<td>IP27: Iniziative di informazione e comunicazione promosse da Regione Liguria [numero]</td>
<td></td>
<td>REGIONE LIGURIA: Settore Ricerca, Innovazione ed Energia</td>
<td>biennale</td>
</tr>
</tbody>
</table>

Tabella 89- Indicatori specifici di prestazione per le linee di sviluppo del PEAR

Come già espresso in precedenza, relativamente agli indicatori legati agli aspetti ambientali (di descrizione ed efficacia), si rimanda all’Allegato 3 del presente documento.
ALLEGATO 1 - IL QUADRO NORMATIVO SUI TEMI AMBIENTALI
ALLEGATO 1 - Il Quadro normativo sui temi ambientali

Si riporta nel seguito il quadro di riferimento relativo agli strumenti normativi di tutela e pianificazione sui temi ambientali al fine di fornire un inventario complessivo aggiornato che il PEAR 2014-2020 deve tenere in considerazione e con il quale deve essere coerente.

I documenti internazionali e comunitari

- Conferenza COP21, Parigi, Francia, 30/11/2012-12/12/2015
- Direttiva Habitat 92/43/CEE
- Direttiva Uccelli 2009/147/CE
- Direttiva Acque 2000/60/CE
- Direttiva 2007/60/CE - Valutazione e gestione dei rischi di alluvioni
- Strategia Europea di Adattamento ai Cambiamenti Climatici

I documenti nazionali

- DM 10/09/2010 Linee guida per il procedimento di cui all’Art. 12 del D Lgs n. 387/2003 per l’autorizzazione alla costruzione e all’esercizio di impianti di produzione di elettricità da fonti rinnovabili nonché linee guida tecniche per gli impianti stessi
- Decreto del Ministero dell’ambiente e della tutela del territorio e del mare del 13/10/2016 - Designazione di 11 zone speciali di conservazione della regione biogeografica continentale e di 27 ZSC della regione biogeografica mediterranea insistenti nel territorio della Regione Liguria
- Decreto del Ministero dell’ambiente e della tutela del territorio e del mare del 24/06/2015 - Designazione di 14 Zone speciali di conservazione della regione biogeografica alpina insistenti nel territorio della regione Liguria
- Decreto del Ministero dell’ambiente e della tutela del territorio del 5/07/2007- Elenco delle zone di protezione speciale (ZPS) classificate ai sensi della direttiva 79/409/CEE
- DPR n. 357 del 8/09/1997 e ss.mm.ii - Regolamento recante attuazione della Direttiva 92/43/CE relativa alla conservazione degli habitat naturali e seminaturali, nonché della flora e della fauna selvatiche
- D Lgs n. 152/2006 Testo unico Ambiente (recepimento direttiva acque)
- D Lgs n. 49/2010 - attuazione Direttiva 2007/60/CE
- D Lgs n. 42/2004 - Codice per i beni culturali e del paesaggio
- Strategia Nazionale di Adattamento ai Cambiamenti Climatici

I documenti regionali

- LR n. 28/2009 - Disposizioni in materia di tutela e valorizzazione della biodiversità
- DGR n. 1793 del 18/12/2009 - Istituzione Rete ecologica - LR 28/2009 Art. 3
- DGR n. 1444 del 2/11/2009 - Approvazione della rappresentazione cartografica degli habitat, delle specie ed altri elementi naturalistici rilevanti presenti sul territorio ligure
- DGR n.141 del 15/02/2008 - Approvazione “Linee guida per la progettazione, gestione e risanamento ambientale delle attività estrattive a cielo aperto e in sottosuolo e opere connesse
- LR n. 5 del 25/01/1993 - Individuazione dell’itinerario escursionistico denominato "Alta Via dei Monti Liguri" e disciplina delle relative attrezzature
• LR n. 24 del 16/06/2009 - Rete di fruizione escursionistica della Liguria
• DGR n. 1122 del 21/09/2012 - Approvazione linee guida impianti produzione energia da fonti rinnovabili
• DGR n. 91/2013 - Autorità di Bacino regionale ex LR n. 58/2009. Criteri ed indirizzi per l'individuazione di aree a minor pericolosità relativa nella fascia B dei piani di bacino regionali
• RR n. 3/2011 Tutela delle aree di pertinenza dei corsi d'acqua
• LR n. 18/1999 - Adeguamento delle discipline e conferimento delle funzioni agli enti locali in materia di ambiente, difesa del suolo ed energia
• DGR n. 412/2015 - Modifiche ed integrazioni alla mappatura delle aree interessate da inondazione negli eventi alluvionali dell'autunno 2014
• LR n. 15/2015 - Disposizioni di riordino delle funzioni conferite alle Province in attuazione della Legge n. 56 del 7/04/2014, (disposizioni sulle città metropolitane, sulle province, sulle unioni e fusioni di comuni)
• LR n. 13/2014 - Testo unico della normativa regionale in materia di paesaggio

#
PIANO ENERGETICO AMBIENTALE REGIONALE 2014-2020

ALLEGATO 2 – SINTESI DEGLI ASPETTI AMBIENTALI E MISURE DI ATTENZIONE/MITIGAZIONE
a)

ALLEGATO 2 - Sintesi degli aspetti ambientali e misure di attenzione/ mitigazione

L’Allegato fornisce un’estrema **sintesi delle valutazioni** contenute nel Rapporto Ambientale della V.A.S. del PEAR e le **misure di attenzione e mitigazione** conseguenti.

Viene dapprima riportata una sintesi dei possibili **effetti** che gli interventi possono generare in relazione alle componenti ambientali e ai fattori antropici e socio-economici tramite una “**matrice riepilogativa delle potenziali interferenze**”.

Per ragioni di sinteticità sono presenti nella matrice le sole Linee di Sviluppo del PEAR, anche se queste sono state valutate attraverso le singole Azioni previste per ogni Linea di Sviluppo.

Segue poi un’analisi sotto forma di **schede sintetiche** per ciascuna delle opzioni tecnologiche, contenente:

- la descrizione della **tecnologia** e i suoi punti di forza e di debolezza,
- lo **stato attuale** e la proposta di **scenario di piano** derivante dal Decreto Burden Sharing,
- le **potenziali interferenze** su componenti/fattori,
- per ogni componente/fattore interessato da effetti potenzialmente negativi le conseguenti misure di **mitigazione e attenzione** ambientale e i criteri localizzativi e prestazionali.

Figura 38 - Matrice riepilogativa delle potenziali interferenze

57 In base alla normativa europea, nazionale e regionale il PEAR è sottoposto a procedura di Valutazione Ambientale Strategica; tale analisi viene descritta nel relativo Rapporto Ambientale.

58 La matrice deriva dal Rapporto Ambientale e dalle osservazioni contenute nel Parere Motivato di VAS n. 47/2015. Essa segue le tematiche espressi nel Quadro Conoscitivo del Rapporto Ambientale (impostate secondo i “modelli di riferimento” di VAS della Regione Liguria), sintetizza una serie di approfondite valutazioni (relative a scenari alternativi, criteri di sostenibilità, pianificazione regionale, pianificazione settoriale) e le schede valutative di dettaglio.

59 Le potenziali interferenze (che possono impattare sulle varie componenti ambientali o possono aggravare la pressione dei fattori antropici), sono specificate nel Rapporto Ambientale con schede valutative di dettaglio relative alle Linee di Sviluppo e alle singole Azioni ad esse collegate.
Le schede sono suddivise per specifico settore tecnologico del PEAR, come segue:

A. EOLICO
B. IDROELETTRICO
C. FOTOVOLTAICO
D. SOLARE TERMICO
E. BIOGAS
F. BIOMASSE
G. COGENERAZIONE E TRIGENERAZIONE
H. TELERISCALDAMENTO E TELERAFFRESCAMENTO
I. POMPE DI CALORE
L. EFFICIENZA ENERGETICA

Le schede rappresentano uno strumento di indirizzo rivolto ai proponenti, non solo per una maggiore completezza documentale nella fase autorizzativa, ma soprattutto per un miglioramento della qualità progettuale (strettamente connesso a quello della qualità complessiva del territorio, del paesaggio e dell’ambiente).

Tali schede sono state predisposte con la collaborazione degli Uffici competenti di Regione Liguria e degli Enti interessati alle fasi autorizzative, anche con l’intento di omogeneizzare e rendere più efficace l’iter procedurale.

Le misure di attenzione e mitigazione comprese nelle schede costituiscono un elemento di velocizzazione delle procedure, in quanto forniscono indicazioni puntuali sui principali elementi da considerare in fase progettuale e per le relative analisi di corredo; pertanto la fase di valutazione potrà risultare più efficace anche allo scopo di ridurre il numero di richieste di integrazioni rivolte ai proponenti.

60 Quest’ultima è stata inserita per fornire un quadro complessivo delle valutazioni, ma non contiene elementi di attenzione/mitigazione in quanto la fase valutativa non ha evidenziati effetti potenzialmente negativi.
Il presente Allegato deve essere considerato congiuntamente agli elementi contenuti nelle “LINEE GUIDA PER L’AUTORIZZAZIONE, LA VALUTAZIONE AMBIENTALE, LA REALIZZAZIONE E LA GESTIONE DEGLI IMPIANTI PER LO SFRUTTAMENTO DELLE FONTI ENERGETICHE RINNOVABILI”, DGR n. 1122/2012⁶¹, che detta condizioni per l’autorizzabilità degli impianti da fonti rinnovabili non solo dal punto di vista ambientale, rispetto alle seguenti tecnologie:

- eolico,
- idroelettrico,
- fotovoltaico,
- biomasse (compreso biogas).

Per le suddette tecnologie, fatti salvi i contenuti di tali “Linee Guida” a cui si rimanda integralmente, sono quindi presentati gli ulteriori approfondimenti che costituiscono specifico contributo del PEAR.

⁶¹ Il Decreto costituisce il recepimento delle Linee Guida nazionali (Dm 10 settembre 2010).
MATRICE RIEPILOGATIVA DELLE POTENZIALI INTERFERENZE

<table>
<thead>
<tr>
<th>LINEE DI SVILUPPO del PEAR</th>
<th>componenti ambientali</th>
<th>fattori antropici</th>
<th>fatt. soc.-ec.</th>
<th>TECNOLOGIA</th>
<th>SCHEDA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aria</td>
<td>suolo</td>
<td>acque</td>
<td>biodiv.</td>
<td>paesaggio</td>
</tr>
<tr>
<td>EE.1. Ridurre i consumi energetici del settore residenziale</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>EE.2. Incrementare l’efficienza energetica nei settori terziario, imprese e cicli produttivi</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>EE.3. Incrementare l’efficienza energetica del patrimonio edilizio pubblico e dell’illuminazione pubblica</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FER.1. Promuovere la realizzazione di impianti fotovoltaici su edifici e in aree industriali o degradate dal punto di vista ambientale</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FER.2. Favorire l’installazione di impianti edici attraverso la semplificazione delle procedure autorizzative</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FER.4. Incrementare la produzione energetica da biogas da RSU</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FER.5. Sviluppare la ricerca nei settori tecnologici correlati alle fonti rinnovabili ed all’efficienza energetica</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FER.6. Favorire lo sviluppo delle Smart-grid</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FER.7. Sostenere la diffusione di impianti a biomassa di piccola e media taglia attraverso lo sviluppo della filiera legnoenergia e l’utilizzo della biomassa locale</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FER.8. Incrementare il ricorso alla tecnologia solare termica</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SE.1. Sostenere le imprese che operano nel settore della Green Economy in Liguria</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SE.2. Sostenere lo sviluppo e la qualificazione nei settori edile ed impiantistico (efficienza energetica e risparmio energetico)</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>IF.1. Promuovere la formazione professionale e l’alta formazione nel settore energetico anche con riferimento a nuove figure professionali ed ai giovani</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>IF.2. Coinvolgere i portatori di interesse nel settore dell’energia in tutte le fasi di attuazione del Piano</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>IF.3. Realizzare azioni di sensibilizzazione rivolte ai cittadini</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Tecnologia EOLICO

LINEA DI SVILUPPO Del PEAR: FER.2. Favorire l’installazione di impianti eolici attraverso la semplificazione delle procedure autorizzative

Il principio di funzionamento degli aerogeneratori è lo stesso dei mulini a vento con la differenza che nel caso degli aerogeneratori il movimento di rotazione delle pale mosse dal vento viene trasmesso ad un alternatore che produce energia elettrica. Esistono aerogeneratori diversi per forma, dimensione e potenza. Un tipico aerogeneratore ad asse orizzontale è costituito da una torre alla cui sommità è presente una navicella che porta un rotore composto da un mozzo, al quale sono fissate 2 o 3 pale. Nella navicella, che può essere orientata in un arco di 360° sul proprio asse, sono ubicati l’alternatore elettrico ed i vari sistemi di controllo della turbina. L’innovazione tecnologica del settore mira principalmente a ridurre i costi dell’energia prodotta attraverso l’economia di scala. Pertanto la taglia delle macchine presenti sul mercato tende ad aumentare nel tempo, arrivando oggi a una taglia commerciale di oltre 5 MW, con diametro rotore ed altezza torre pari a 125 metri. Inoltre, in previsione della saturazione dei siti disponibili sulla terraferma, il trend tecnologico si sta orientando sempre più verso il revamping di fattorie eoliche obsolete e le applicazioni off-shore (in mare aperto), per le quali il trasporto e montaggio di componenti di grandi dimensioni, e il problema dell’accettazione sociale si pongono in misura molto minore.

PUNTI DI FORZA
- Sono presenti in Liguria numerosi siti ventosi e la produttività di impianti installati, contro le prime aspettative, è fra le più alte del paese (dal Rapporto Statistico 2012 del GSE le ore equivalenti di utilizzo sono 2372). La presenza in regione di importanti operatori industriali specializzati nello sviluppo e nella fabbricazione di componenti e sistemi elettromeccanici ed elettronici, con strettì rapporti con il mondo della ricerca, costituisce un punto di forza per il settore.

PUNTI DI DEBOlezza
- Le valenze paesaggistiche e le caratteristiche geomorfologiche del territorio influenzano fortemente i siti potenzialmente idonei alle installazioni. Tra i punti di debolezza vanno inoltre rilevate la mancanza generalizzata di adeguata informazione, la possibile avversione delle comunità locali e di alcune associazioni ambientaliste nei confronti degli impianti di produzione di energia da fonte eolica e la disponibilità limitata di dati aggiornati sulla resa e sulla potenzialità effettiva.

Opportunità
- Si sta assistendo ad uno sviluppo della tecnologia con possibilità di produrre e realizzare aerogeneratori di grossa taglia con migliore rapporto costo/produzione. La combinazione fra il tessuto industriale volato all’innovazione tecnologica e l’accesso al mare, la cantieristica e la logistica portuale disponibile in regione, rappresentano un’opportunità rilevante per l’introduzione nel bacino del Mediterraneo delle nuove tecnologie dell’eolico offshore.

<table>
<thead>
<tr>
<th>STATO DI FATTO</th>
<th>SCENARIO DI PIANO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 2012 ("Rapporto statistico 2012 – Impianti a fonti rinnovabili" del GSE) la potenza installata in Liguria è pari a 47 MW, con una produzione energetica pari a circa 8 ktep. (Stime effettuate sulla base delle informazioni derivanti dalle procedure autorizzative consentono di aggiornare il dato di potenza installata al 2013 a circa 60 MW, con una produzione energetica stimabile in circa 10 ktep.)</td>
<td>Per poter ottemperare agli obblighi derivanti dal Decreto del Ministero dello Sviluppo Economico 15 marzo 2012 "Burden Sharing", sulla base delle considerazioni precedenti, si è assunto come target regionale per il 2020 una potenza eolica installata complessiva pari a 250 MW. Al fine di favorire il raggiungimento di tali obiettivi la Regione Liguria prosegue, nell’ambito di un processo già avviato da qualche anno, nelle azioni di svernellamento degli iter autorizzativi. In base ad una manifesta tendenza a livello mondiale, nei prossimi anni si assisterà ad un incremento nella taglia delle macchine installate e della potenza complessiva del singolo impianto.</td>
</tr>
</tbody>
</table>

POTENziali interferENZE

Per favorire l’installazione di impianti eolici attraverso la semplificazione delle procedure autorizzative.

<table>
<thead>
<tr>
<th>FER.2.</th>
<th>Favorire l’installazione di impianti eolici attraverso la semplificazione delle procedure autorizzative</th>
</tr>
</thead>
<tbody>
<tr>
<td>aria</td>
<td>☐</td>
</tr>
<tr>
<td>suolo</td>
<td>☐</td>
</tr>
<tr>
<td>acqua</td>
<td>☐</td>
</tr>
<tr>
<td>biodiv.</td>
<td>☐</td>
</tr>
<tr>
<td>paesaggio</td>
<td>☐</td>
</tr>
<tr>
<td>acustica</td>
<td>☐</td>
</tr>
<tr>
<td>elettrom.</td>
<td>☐</td>
</tr>
<tr>
<td>rifiuti</td>
<td>☐</td>
</tr>
</tbody>
</table>

In fase di cantiere l’impatto ambientale generato da una turbina eolica è prevalentemente legato a:
- consumo di suolo per la fondazione della torre, la piazzola di manovra e per la creazione di accessi stradali temporanei idonei per autotreni e gruppi di grandi dimensioni;
- opere di scavo per la realizzazione del basamento e delle linee di collegamento elettrico in MT fino alla più vicina sottostazione per la connessione alla rete nazionale;
- operazioni di cantiere che portano a danni alla vegetazione, a volte con disboscamento non solo del sito di installazione ma anche delle vie di accesso.

In fase operativa una turbina eolica genera principalmente:
- impatto visivo determinato dallo sfumato della turbina e dalla loro ubicazione (occorre a tal fine rammentare che per gli impianti eolici industriali la Regione Liguria rilascia sempre autorizzazione paesaggistica);
- inquinamento acustico di tipo aerodinamico, generato dall’interferenza tra corrente fluida e pale in movimento, e di tipo meccanico, oggi molto
NOTA: Per i criteri di ammissibilità territoriale, paesistica e ambientale, si richiama integralmente quanto previsto dal capitolo “2. Impianti Eolici” delle "LINEE GUIDA PER L'AUTORIZZAZIONE, LA VALUTAZIONE AMBIENTALE, LA REALIZZAZIONE E LA GESTIONE DEGLI IMPiantI PER LO SFRUTTAMENTO DELLE FONTI ENERGETICHE RINNOVABILI", DGR n. 1112/2012, che dettano condizioni per l’autorizzabilità degli impianti da fonti rinnovabili non solo dal punto di vista della valutabilità ambientale.

Fatti salvi quindi i contenuti di tali “Linee Guida”, a cui si rimanda, di seguito sono presentati gli ulteriori approfondimenti quali contributo specifico del PEAR.

Occorre evidenziate che con il presente PEAR la Regione Liguaria provvede, con Tavolo Tecnico specifico, alla ridefinizione della Cartografia delle aree non idonee alla collocazione di impianti eolici (allegato II alla DCR n.3/09) attualmente vigente, individuando con maggiore dettaglio i criteri per una corretta localizzazione degli impianti eolici che considerino i diversi elementi di attenzione, al fine di costituire un quadro completo a supporto della programmazione degli interventi e del loro corretto inserimento paesaggistico ed ambientale.

POTENzialI INTERFERENCE	**principalI ELEMENTI DI ATTENZIONe/MITIGAZIONe per singola componente/fattore interessato**
suolo | **consumo del suolo,** **impermeabilizzazione,** **compattazione**
A.1. Ottimizzare sistematicamente la progettazione al fine di ridurre il consumo di suolo con l’obiettivo di perseguire la maggiore efficienza, quindi attraverso un numero minore di aerogeneratori di maggiore potenza.
A.2. Conservare la massima permeabilità del terreno, sia con accorgimenti progettuali che tecnologici (anche ad esempio attraverso piattaforme di fondazione di tipo alveolare).
A.3. Evitare sistematicamente la compattazione del suolo causata da eccessive pressioni meccaniche, conseguenti all’utilizzo di macchinari pesanti.
A.5. Evitare la costruzione ex novo di tratti viari utilizzando sistematicamente la viabilità forestale/agricola esistente e scegliendo le tecnologie di trasporto che permettano di minimizzare opere stradali e modifiche conseguenti; qualora si renda necessario realizzare nuovi tratti carrabili, questi dovranno essere preferibilmente di tipo temporaneo (pista forestale).
A.7. Operare sistematicamente il ripristino morfologico dei suoli, con opere di ingegneria naturalistica.
Modifiche morfologiche
A.8. Limitare al massimo le modifiche del sito, attraverso opportune scelte progettuali, rispettando tendenzialmente la morfologia dei suoli.
erosione del suolo
A.10. Seguire tendenzialmente la morfologia dei suoli, prevedendo sistematicamente la canalizzazione delle acque di riuscamento attraverso opere di ingegneria naturalistica.
contaminazione locale o diffusa
A.11. Definire l’entità della produzione e le modalità di raccolta, trasporto e smaltimento degli oli derivanti dal funzionamento a regime del parco eolico.

biodiversità

frammentazione degli habitat
A.13. Evitare la frammentazione degli habitat, l’interruzione della connettività ecologica locale e le interferenze con la Rete Ecologica Regionale.
A.14. Porre estrema attenzione agli habitat presenti, con particolare riferimento a quegli interventi che possono interferire con le aree comprese nella Direttiva Habitat e Direttiva Uccelli, predisponendo in questo caso gli elaborati necessari alla Valutazione di Incidenza.
A.15. Favorire la localizzazione degli impianti e delle opere accessorie in aree servite da viabilità esistente, desumibile non solo da un’analisi cartografica ma anche da specifici sopralluoghi minimizzando le opere stradali o le modifiche alla preesistente viabilità.

interferenza con la fauna
A.17. Porre particolare attenzione alla vicinanza di aree corridoio per l’avifauna migratoria, interessate da flussi costanti di uccelli nei periodi primaverili e autunnali.
A.18. Prevedere l’eventuale fermo tecnico dell’impianto qualora, a seguito di adeguata attività di monitoraggio, si manifestino periodi caratterizzati da alta probabilità di collisione per avifauna e chiocchetti fauna.
A.19. Adottare soluzioni progettuali delle navicelle per minimizzare il possibile effetto atrattivo sull’avifauna.
A.20. Evitare l’impiego di torri reticolari per non fornire postai adatti alla sosta dell’avifauna.
A.21. Applicare bande transversali colorate su almeno una pala per consentire ai rapaci l’avvicinamento da maggior distanza.
A.22. Prevedere l’applicazione di dispositivi che aumentino la frequenza acustica delle pale in movimento (in genere al di sotto di 1-2 kHz) nell’intervallo di maggiore percezione uditiva dell’avifauna (2-4 kHz).
A.23. Evitare l’illuminazione notturna degli impianti ad eccezione delle luci di sicurezza per la segnalazione, prediligendo
<table>
<thead>
<tr>
<th>POTENZIALI INTERFERENZE</th>
<th>principali ELEMENTI DI ATTENZIONE/MITIGAZIONE per singola componente/fattore interessato</th>
</tr>
</thead>
<tbody>
<tr>
<td>sistemi a bassa/nulla emissione di raggi UV.</td>
<td></td>
</tr>
<tr>
<td>A.24. Valutare il fermo tecnico degli impianti in condizioni atmosferiche di scarsa visibilità (per es. nebbia, pioggia, neve) che possano aumentare il rischio di collisione nei periodi di maggiore passaggio migratorio e di attività dell’avifauna.</td>
<td></td>
</tr>
<tr>
<td>A.25. Applicare sistematicamente metodologie di monitoraggio standardizzate e validate a livello istituzionale regionale/nazionale per avifauna e chirioterii (la restituzione del dato dovrà avvenire nel formato previsto dalla DGR 681/2016 ed eventuali successive modificazioni).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interferenza con la vegetazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.27. Avviare un piano di recupero ambientale con tempi e scadenze certe, prevedendo:</td>
</tr>
<tr>
<td>A.28. il recupero delle aree interessate dalle opere impiantistiche e accessorie, privilegiando sistematicamente tecniche di ingegneria naturalistica adatte al contesto territoriale,</td>
</tr>
<tr>
<td>A.29. Interventi tesi a favorire la ripresa spontanea della vegetazione autoctona, ripristinando la vegetazione eliminata durante la fase di cantiere (piste, aree di stoccaggio dei materiali, ecc.), evitando la contaminazione con specie alloctone e prevedendo inoltre la ripiantumazione delle essenze vegetali presenti in sito, precedentemente stoccate in apposite aree vivisiche, garantendo la sostituzione delle fallanze.</td>
</tr>
</tbody>
</table>

paesaggio

<table>
<thead>
<tr>
<th>Impatto sul contesto paesaggistico, storico-architettonico e archeologico</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.30. Porre particolare attenzione progettuale al consistente impatto sul sistema dei beni paesaggistici e culturali tutelati che gli impianti eolici industriali per loro natura determinano.</td>
</tr>
<tr>
<td>A.31. Predisporre elaborati tecnici relativi alle procedure di VIA e Autorizzazione Paesaggistica che descrivano e consentano di valutare gli impatti, documentando alternative localizzative, tecnologiche e progettuali (ad es. tipologie, diverse altezze, ecc.) ed evidenziando con simulazioni e rendering l’impatto delle varie alternative.</td>
</tr>
<tr>
<td>A.32. Predisporre, da parte di soggetti abilitati, con riferimento alle possibili interferenze con il patrimonio archeologico, il relativo documento di valutazione (dati bibliografici e d’archivio, ricognizioni territoriali, fotointerpretazioni, cartografie storica, geomorfologia dei luoghi) e la carta del potenziale archeologico, da sottoporre alla Soprintendenza.</td>
</tr>
<tr>
<td>A.33. Effettuare la migliore localizzazione possibile, evidenziando approfonditamente le alternative considerate, con riferimento agli impatti sui beni paesaggistici e culturali, siti UNESCO, percorsi storici e culturali, e realizzando uno studio dettagliato dei coni ottici/percettivi, ai fine di evitare installazioni che possano impattare negativamente sulla percezione del contesto paesaggistico e/o storico-architettonico, fornendo documentazione adeguata quali foto-panoramiche e foto-inserimenti.</td>
</tr>
<tr>
<td>A.34. Definire il bacino visivo dell’impianto eolico, cioè della porzione di territorio visibile dall’impianto e da cui l’impianto è visibile con e senza copertura vegetata, effettuando una ricognizione delle principali emergenze storiche, architettoniche, archeologiche naturalistiche e dei punti di vista panoramici da cui l’impianto è visibile e descrivendo, rispetto a questi punti di vista prioritari, l’interferenza visiva dell’impianto e documentando dettagliatamente le relative misure di mitigazione dell’impatto visivo previste.</td>
</tr>
<tr>
<td>A.35. Considerare un adeguato rapporto tra quantità e potenza installata privilegiando, ove possibile, l’installazione di macchine ridotte in numero, ma di potenza incrementata considerando che, a distanza, l’osservatore difficilmente percepisce una variazione di altezza anche decametrica della pala eolica dovuta all’incremento di potenza.</td>
</tr>
<tr>
<td>A.37. Scegliere nella fase di cantiere tecnologie di trasporto che permettano di minimizzare le opere stradali o le modifiche alle preesistenze. Considerando alle scelte localizzative dovrebbero privilegiarsi tracciati di minor impatto anche attraverso ipotesi progettuali alternative, sia dal punto di vista morfologico che paesaggistico, evitando quelli interventi che possano pregiudicare la percezione dei luoghi di intervento.</td>
</tr>
<tr>
<td>A.38. Effettuare in fase di esecuzione il totale ripristino delle aree di cantiere (vedasi il precedente punto);</td>
</tr>
<tr>
<td>A.39. Preferire per gli elettroodi l’interramento rispetto alle linee aeree, se non preesistenti, e comunque in questo ultimo caso prevedere la minimizzazione dell’impatto sul paesaggio sia attraverso l’accurata progettazione dei tracciati che con l’utilizzo di manufatti a ridotta interferenza.</td>
</tr>
<tr>
<td>A.40. Predisporre in riferimento agli elettroodi internati adeguata valutazione di interesse archeologico.</td>
</tr>
<tr>
<td>A.41. Individuare opere di mitigazione specifica, con preciso riferimento ai beni paesaggistici e culturali interessati dall’intervento, che potranno comprendere:</td>
</tr>
<tr>
<td>A.42. opere di mitigazione diretta (barriere vegetali con specie autoctone, ecc.),</td>
</tr>
<tr>
<td>A.43. opere di mitigazione indiretta, tramite interventi di miglioramento diffuso nelle aree contermini; ove ciò non sia possibile, dovranno essere concordate specifiche opere alternative compensative da definire con apposite convenzioni con gli Enti competenti.</td>
</tr>
<tr>
<td>A.44. Garantire il minor impatto paesaggistico possibile per le opere accessorie, comprese la cabina tecnica che dovranno prioritariamente essere integrate nell’aerogeneratore o, se questo comportasse ulteriore impatto visivo, collocate preferibilmente riutilizzando manufatti preesistenti; qualora siano interessati manufatti di architettura rurale ne dovrà essere garantito il restauro con duplice effetto compensativo e mitigativo. Ove ciò non sia possibile, gli stessi dovranno avere connotazione a fabbricato rurale.</td>
</tr>
</tbody>
</table>

inquinamento acustico

<table>
<thead>
<tr>
<th>Impatto acustico su aree/edifici residenziali</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.45. Analizzare in fase progettuale la compatibilità dell’opera con la zonizzazione acustica comunale e la presenza di recettori sensibili potenzialmente impattati; effettuare una valutazione di impatto acustico, verificando in sito i livelli assoluti e differenziali del rumore immesso nell’ambiente circostante.</td>
</tr>
</tbody>
</table>

#
Potenziali Interferenze

Inquinamento elettromagnetico

<table>
<thead>
<tr>
<th>Elettromagnetismo delle linee elettriche ad A/M tensione</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.46. Adottare tecniche di ottimizzazione delle fasi (per linee a doppia terna).</td>
<td></td>
</tr>
<tr>
<td>A.47. Adottare sostegni più alti o di tipo ‘compatto’.</td>
<td></td>
</tr>
<tr>
<td>A.48. Operare la compattezza dei conduttori per le linee a 132 kV.</td>
<td></td>
</tr>
<tr>
<td>A.49. Introdurre un sistema di abbattement dei livelli mediante circuito compensativo ("loop attivo"), applicabile a linee che hanno i conduttori allineati.</td>
<td></td>
</tr>
<tr>
<td>A.50. Utilizzare, ove possibile, linee di trasmissione esistenti.</td>
<td></td>
</tr>
<tr>
<td>A.51. Seguire i criteri ERPa per i nuovi elettrodotti.</td>
<td></td>
</tr>
<tr>
<td>A.52. Utilizzare per l’aliascio alla rete elettrica di distribuzione, linee interrate lungo viabilità esistente, con una profondità minima di 1 m, protette e accessibili nei punti di giunzione ed opportunamente segnalate. Solo in caso di motivata e documentata difficoltà tecnico-economica, considerare soluzioni alternative.</td>
<td></td>
</tr>
</tbody>
</table>

Ulteriori criteri localizzativi e prestazionali rispetto alle “Linee Guida” - DGR n. 1122/2012

Fatto

- Favorire quanto previsto dal capitolo “2. Impianti Eolici” delle “Linee Guida” - DGR n. 1122/2012 e dalle indicazioni inserite all’interno della Cartografia delle Aree Non Idonee, e sottolineata la necessità di considerare le criticità localizzative di alcuni ambiti del PTCp, di riqualificare aree degradate, di contenere il consumo di suolo, di tutelare siti UNESCO e relative buffer zone, zone ME del PTCp e beni monumentali, si evidenziano i seguenti elementi localizzativi e prestazionali:

- A.53. Collocare preferibilmente gli impianti ai di fuori dei crinali di prima esposizione verso costa e di quelli di riconosciuto valore paesaggistico non ancora interessati da eolico. Potranno essere presi in considerazione interventi su tali aree solo previa apposite valutazioni complessive di studi di intervisibilità,

- A.54. Operare scelte localizzative che permettano di minimizzare l’impatto paesaggistico, sottomettendo sistematicamente gli interventi di fattoria eolica al profilo dei crinali, valutando caso per caso il miglior versante in funzione delle pendenze e dell’accessibilità,

- A.55. Prevedere, in caso di più aerogeneratori, una collocazione tale da non creare effetto “barriera” e/o effetto “selva”.

- A.56. Considerare attentamente la localizzazione dell’impianto, evidenziando nelle relazioni accompagnatorie del progetto la valutazione di alternative localizzative reali, considerate al fine della migliore scelta del sito:
 - sia a grande scala (localizzazione all’interno del territorio provinciale/regionale) anche in funzione degli impianti esistenti (sia interni che esterni ai confini della Regione Ligure) al fine di non evitare minimizzare eventuali effetti cumulativi negativi e in special modo effetti barriere;
 - sia a scala locale (alternative localizzative all’interno del sito prescelto), considerando miglior soluzione localizzativa con minimizzazione delle modifiche morfologiche, geo-pedologiche, vegetazionali del sito e del bisogno di nuovi accessi stradali, evitando frammentazione di habitat, interruzione della connettività ecologica locale, interferenze con la Rete Ecologica Regionale e con particolare attenzione alla minimizzazione dell’impatto paesaggistico (vedasi i precedenti punti riferiti agli elementi paesaggistici).

- A.57. Mantenere una distanza in linea d’aria di 50 volte l’altezza massima percepita degli aerogeneratori dalle principali emergenze storiche, architettoniche, archeologiche, naturalistiche e dai punti di vista panoramici da cui l’impianto è visibile.

- A.58. Fornire per gli impianti esistenti, dati anemometrici e di produzione elettrica dell’impianto con cadenza annuale (dietro esplicita richiesta, la Regione ne garantisce la riservatezza).

- A.60. Prestare attenzione al distacco delle pale e al rischio di ribaltamento del sistema palo/aerogeneratore, nel rispetto degli standard internazionali: la fondazione deve essere calcolata combinando le sollecitazioni agenti nei modi più sfavorevoli secondo le norme tecniche vigenti, garantendo di conseguenza la stabilità della macchina anche in condizioni meteorologiche estreme.

- A.61. Rispettare una distanza minima di ciascun aerogeneratore da unità abitative munite di abitabilità, regolarmente censite e stabilmente abitate, non inferiore ai 200 m.

- A.62. Rispettare una distanza minima di ciascun aerogeneratore dai centri abitati individuati dagli strumenti urbanistici non inferiori a 6 volte l’altezza massima dell’aerogeneratore.

- A.64. Prevedere idonei interventi compensativi (razionalizzazione di impianti obsoleti, di tralici, di linee elettriche aeree a media e bassa tensione, miglioramento ambientale/vegetazionale di aree contermini o limitrofe con piantumazioni di specie locali, ecc.).

- A.66. Al fine di garantire che gli elementi di attenzione/mitigazione indicati nella presente Scheda siano stati realmente realizzati, fornire a lavori ultimati idonea documentazione (relazione tecnica e fotografica) sulle opere di mitigazione e ripristino indicate (tale monitoraggio è necessario sia a fini Vla che a fini paesaggistici anche per alimentare l’Osservatorio Regionale).
Tecnologia

IDROELETTRICO

LINEA DI SVILUPPO del PEAR: FER.3. Sostenere l’installazione di impianti di piccola taglia nel settore idroelettrico e la riattivazione di centraline esistenti

Per centrale idroelettrica si intende una serie di opere di ingegneria idraulica, accoppiate a macchinari idonei allo scopo di ottenere la produzione di energia elettrica da masse di acqua in movimento. In sintesi: l’acqua trascina e mette in rotazione una turbina, che aziona un alternatore, il quale trasforma il movimento di rotazione in energia elettrica. Le centrali idroelettriche si differenziano in:
- ad acqua fluente (a salto concentrato o ad asta sottesa): l’impianto non dispone di capacità di regolazione degli afflusso, non prevedendo invasi di accumulo, per cui la portata sfruttata dipende direttamente da quella disponibile istantaneamente nel corso d’acqua; si tratta degli impianti a cui si riferisce la Linea di Sviluppo del PEAR;
- a deflusso regolato (a bacino): si tratta di impianti provvisti di un invaso. In genere queste centrali sono superiori ai 10 MW di potenza;
- centrali con accumulo a mezzo pompaggio: l’impianto è dotato di due serbatoi collocati a quote differenti; nel periodo di richiesta di potenza elettrica l’acqua viene fatta defluire dal serbatoio in quota a quella a bassa quota generando energia elettrica attraverso le turbine; nei periodi di produzione energetica eccessiva (ore notturne in cui i grossi impianti di produzione da energie non rinnovabili non possono essere spenti) l’acqua viene pompata nel serbatoio superiore.

In base alla potenza nominale, si distinguono:
- micro-impianti: potenza < 100 kW;
- mini-impianti: 100 kW – 1 MW;
- piccoli impianti: 1 – 10 MW;
- grandi impianti: potenza > 10 MW.

Punti di forza
Vista la significativa diffusione storica dell’idroelettrico sul territorio ligure esiste ancora la possibilità di riavviare vecchie centrali e centrali centralizzate in disuso.

Punti di debolezza
Rimane disponibile un numero contenuto di siti sfruttabili per la produzione di energia idroelettrica, spesso collocati in aree di difficile accesso e soggette a vincoli ambientali e paesaggistici.

Opportunità
Opzioni tecnologiche per lo sfruttamento a fini energetici dei salti esistenti in corrispondenza di condotte acquedottistiche.

Minacce
Occorre tenere conto dei cambiamenti climatici globali che possono determinare ricadute sulle precipitazioni e sui regimi idrici (a tale proposito si evidenzia nel corso degli ultimi anni una diminuzione della produttività degli impianti installati).

STATO DI FATTO
La potenza idroelettrica installata al 2012 in Liguria risulta pari a 86 MW (fonte: "Rapporto Statistico 2012 – Impianti a fonti rinnovabili" del GSE). Come produzione si assume la media della produzione di energia nel periodo 2008-2012 di cui ai Rapporti sulle Fonti Rinnovabili del GSE per i relativi anni, al fine di tenere conto delle variazioni di produttività dovute agli effetti delle variazioni climatiche. Sotto questa ipotesi la produzione media risulta pari a circa 20 ktep.

SCENARIO DI PIANO
Lo scenario di Piano al 2020 prevede una potenza complessiva installata da fonte idroelettrica pari a 110 MW, con una produzione energetica stimata del valore di circa 26 ktep, da raggiungersi favorendo l’installazione e la riattivazione di impianti mini-idroelettrici e la realizzazione di sistemi a servizio di acquedotti. L’incremento previsto per questo tipo di fonte è modesto rispetto a quanto ipotizzato per altre fonti rinnovabili a causa del fatto che le risorse idroelettriche della regione sono in gran parte già sfruttate.

POTENZIALI INTERFERENZE

LINEA DI SVILUPPO del PEAR

<table>
<thead>
<tr>
<th>componenti ambientali</th>
<th>fattori antropici</th>
<th>fatt. soc-ecc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>aria</td>
<td>suolo</td>
<td>acque</td>
</tr>
<tr>
<td>FER.3.</td>
<td>Sostenere l’installazione di impianti di piccola taglia nel settore idroelettrico e la riattivazione di centraline esistenti</td>
<td></td>
</tr>
</tbody>
</table>

L’impatto generato dagli impianti idroelettrici ad acqua fluente è notevolmente inferiore rispetto a quello di grandi impianti dotati di bacino. È tuttavia da evidenziare che per gli impianti ad acqua fluente, specie in vista di nuove captazioni, in alcuni tratti fluviali i quantitativi d’acqua potrebbero ridursi, provocando degli impatti sugli organismi acquatici con il deterioramento degli habitat e la perdita di specie di fauna e flora tipiche. E’ quindi prioritario porre l’attenzione sul Deflusso Minimo Vitale (DMV) necessario alla conservazione delle comunità biologiche legate all’ambiente acquatico.

Nel caso di nuove realizzazioni le modificazioni introdotte dalle necessarie edificazioni di strutture a servizio dell’impianto (edificio di centrale, opere e punti di presa, eventuali opere accessorie quali vasche di carico, vasche di decantazione, canali di aduzione, ecc.) oltre al consumo e impermeabilizzazione del suolo, potranno produrre disturbo nella percezione paesaggistica del sito, in particolare per la realizzazione di grossi impianti.

NOTE:

- Per i criteri di ammissibilità territoriale, paesistica e ambientale, si richiama integralmente quanto previsto dal capitolo "4. Impianti miniidroelettrici" delle **“LINEE GUIDA PER L’AUTORIZZAZIONE, LA VALUTAZIONE AMBIENTALE, LA REALIZZAZIONE E LA GESTIONE DEGLI IMPIANTI PER LO SFRUTTAMENTO DELLE FONTI ENERGETICHE RINNOVABILI”, DGR n. 1122/2012**, che dettano condizioni per l’autorizzabilità degli impianti da fonti rinnovabili non solo dal punto di vista della valutabilità ambientale.

- Fatti salvi quindi i contenuti di tali "Linee Guida", a cui si rimanda, di seguito sono presentati gli ulteriori approfondimenti quali contributo specifico del PEAR.

- Occorre evidenziare che il presente PEAR prevede una azione specifica, attraverso l’attivazione di un apposito Tavolo Tecnico per la definizione dei criteri per la mappatura dei tratti fluviali non idonei all’idroelettrico.
<table>
<thead>
<tr>
<th>POTENZIALI INTERFERENZE</th>
<th>principali ELEMENTI DI ATTENZIONE/MITIGAZIONE per singola componente/fattore interessato</th>
</tr>
</thead>
<tbody>
<tr>
<td>suolo</td>
<td></td>
</tr>
</tbody>
</table>
| **Impermeabilizzazione del suolo, compatteggiamento** | B.1.Individuare preferibilmente le aree di cantiere su aree degradate/compromesse garantendo il mantenimento della permeabilità del terreno e comunque prevedere la risistemazione finale delle aree.
 B.2. Evitare quando possibile sistematicamente la realizzazione di viabilità di servizio; qualora sia strettamente necessaria dovrà essere realizzata di dimensione minima e col mantenimento del fondo naturale. |
| **Rischio geologico** | B.3. Evitare la collocazione dell’impianto e delle opere accessorie in aree interessate da frane attive e quiescenti, verificando anche la loro presenza a monte dell’impianto in relazione al rischio specifico per lo stesso. |
| **Contaminazione locale o diffusa** | B.4. Evitare la percolazione di contaminanti nel terreno e il rilascio di lubrificanti/combustibili o altre sostanze inquinanti. |
| biodiversità | |
| Defflusso delle acque ed interferenza con gli aspetti bionaturalistici | B.5. Porre estrema attenzione agli habitat presenti, con particolare riferimento a quegli interventi che possono interferire con le aree comprese nella Direttiva Habitat e Direttiva Uccelli, predisponendo in questo caso gli elaborati necessari alla Valutazione di Incidenza.
 B.6. Prevedere che le modalità di presa siano tali da non consentire la captazione di portate inferiori alla minima turbinabile anche qualora siano eccedenti il deflusso minimo vitale (DMV) e tali da limitare fisicamente la portata derivabile al massimo concesso.
 B.7. Prevedere la modalità di rilascio del DMV tale che lo sforzo del DMV si attivi fisicamente (senza il ricorso a paratoie o altro sistema elettromeccanico) prima dell’attivazione della soglia di derivazione. Il rilascio del DMV potrà avvenire totalmente sulla scala di risalita per ittiofauna o essere parzializzato (per es. tra lo sforzo del DMV stesso e una luce ricavata sottobattente). Tale requisito progettuale è imprescindibile, salvo per impianti idroelettrici a salto concentrato, in particolare se allestiti sfruttando sbaramenti esistenti.
 B.8. Modulare il prelievo di acqua e calcolare il DMV in modo da garantire non solo il continuum fluviale, ma anche il mantenimento delle migliori condizioni possibili per tutti gli ambienti ripariali, in modo che tutti gli organismi legati all’acqua (sia animali che vegetali) non si trovino in condizioni di stress ambientale o riproduttivo.
 B.9. Prevedere in fase di progettazione, anche nel caso di briglie esistenti, la realizzazione o l’adeguamento dei sistemi di superamento della briglia per la fauna acquatica (strutture di rimonta), con particolare riferimento alle specie caratteristiche del corso d’acqua in questione: per la loro fattibilità le strutture di rimonta per l’ittiofauna dovranno essere valutate con apposito studio ittiologico di dettaglio, analizzando approfonditamente l’impatto sullo stato dei luoghi.
 B.13. Garantire la continuità fluviale ai piedi della briglia evitando fenomeni di trappolamento per formazione di pozze isolate dal resto del corso d’acqua.
 B.14. Condurre tutte le operazioni di approntamento, di cantiere e di manutenzione previste, in particolare per quel che riguarda la fauna, in fasi temporali possibilmente lontane dai periodi riproduttivi e comunque valutando di volta in volta il periodo migliore sulla base delle specie presenti nell’area di realizzazione.
| acque | |
| **Erosione in alveo e qualità delle acque** | B.16. Prevedere che il rilascio dell’acqua in alveo avvenga nella maniera meno violenta possibile, possibilmente con un’uscita a sfioramento o comunque dislocata in modo da evitare impatti violenti sulla zona sottostante aumentando l’erosione in alveo.
 B.17. Gestire correttamente l’aumento del presenza di solidi sospesi durante le fasi di realizzazione dell’infrastruttura con:
 a. Una preventiva analisi di rischio sito-specifico sui popolamenti presenti ai fini di valutare l’opzione a minor rischio di impatto, fornendo le necessarie indicazioni alla fase di cantiere;
 b. Attuare ogni accorgimento tecnicamente fattibile ai fini di limitare l’interbibiamento delle acque in fase di cantiere (lavori effettuati in prossimità delle sponde, realizzazione condotta, costruzione della centrale, lavori realizzati direttamente in alveo, posa della condotta, ecc.).
 B.18. Evitare contaminazioni con lubrificanti/combustibile o altre sostanze inquinanti a danno della qualità delle acque superficiali e sotterranee, evitando inoltre variazioni chimico-fisiche dell’acqua al passaggio nelle turbine.
 B.19. Collocare i depositi di materiale voluminoso o inquinante a sufficiente distanza dall’alveo per evitare il rischio di trascinamento o contaminazione dell’acqua in caso di piena improvvisa e comunque evitare percolazioni.
 B.20. Predisporre il progetto di variazione o di nuova derivazione ad uso idroelettrico alla luce delle norme del Piano di Tutela delle Acque in particolare per quanto attiene: il DMV idrologico ed ambientale, l’installazione di idonei misuratori della portata prelevatava e la valutazione del rischio ambientale connesso alle derivazioni idriche in relazione agli obiettivi di qualità ambientale. |
B.22. Predisporre elaborati tecnici relativi alle procedure di VIA e Autorizzazione Paesaggistica che descrivano e consentano di valutare gli impatti, documentando alternative localizzative, tecnologiche e progettuali ed evidenziando con simulazioni e rendering l’impatto delle varie alternative.

B.23. Predisporre, da parte di soggetti abilitati, con riferimento alle possibili interferenze con il patrimonio archeologico, il relativo documento di valutazione (dati bibliografici e d’archivio, ricognizioni territoriali, fotointerpretazioni, cartografia storica, geomorfologia dei luoghi) e la carta del potenziale archeologico, da sottoporre alla Soprintendenza.

B.24. Fornire uno studio volto ad individuare la migliore localizzazione, mediante foto-panoramiche, foto-inserimenti, rendering e similari, con specifico riferimento agli impatti sui beni paesaggistici e culturali, siti UNESCO, percorsi storici e culturali.

B.25. Fornire analisi ante e post opera delle potenziali ricadute in termini di variazione del paesaggio, nei periodi di massima e di minima concentrazione idrica, nel tratto sotteso alla derivazione, soprattutto in riferimento a possibili interferenze con la vegetazione spongale.

B.26. Realizzare le opere con il minimo impatto possibile, privilegiando sistematicamente dove possibile l’utilizzo di tecniche d’ingegneria naturalistica.

B.27. Garantire il minor impatto paesaggistico possibile per le opere accessorie, comprese le cabine tecniche che dovranno essere collocate preferibilmente riutilizzando manufatti preesistenti; qualora siano interessati manufatti di architettura rurale ne dovrà essere garantito il restauro con duplice effetto compensativo e mitigativo; ove ciò non sia possibile, gli stessi dovranno avere connotazione a fabbricato rurale.

B.28. Utilizzare preferibilmente per gli elettrogetti l’interramento rispetto alle linee aeree, e comunque in questo ultimo caso prevedere la minimizzazione dell’impatto sul paesaggio sia attraverso l’accurata progettazione dei tracciati che con l’utilizzo di manufatti a ridotta interferenza con lo stesso. Anche in riferimento agli elettrogetti interrati dovrà essere predisposta adeguata valutazione di interesse archeologico;

B.29. Scegliere nella fase di cantiere le tecnologie di trasporto che permettano di minimizzare le opere stradali o le modifiche alle preesistenze: le analisi delle alternative progettuali, soluzioni che minimizzino l’alterazione della vegetazione spongale e lo stato dei luoghi anche in caso di impianti a salto concentrato.

B.30. Prestare massima attenzione, negli interventi di ripristino di briglie esistenti e realizzazione di strutture di rimonta, allo stato dei luoghi scegliendo la localizzazione meno incidente (che non necessariamente coincide con i locali centrali) a parità di efficienza ittiologica.

B.32. Privilegiare per i locali centrali il riutilizzo di manufatti preesistenti e, se necessario ex novo, privilegiarne l’intrarramento, minimizzando l’incidenza delle coperture (ad es. con verde pensile di tipo estensivo, ecc.); nel caso ciò non sia possibile configurare i manufatti con richiamo ai fabbricati storici tipici del contesto fluviale.

B.33. Garantire lo smontaggio di eventuali opere provvisorie/manuente atti a consentire la movimentazione delle turbine e ripristino dello stato preesistente.

B.34. Evitare la visibilità dell’intervento da luoghi di accessibilità pubblica e belvedere per interventi di nuova realizzazione, ponendo particolare attenzione al contesto di intervento (con specifico riferimento a episodi monumentali o di rilevanza paesaggistica ed emergenze architettoniche ME di PTCP, punti ponti, mulini, terrazzamenti ecc.), anche attuando elementi di mitigazione paesaggistica e, ove questo non sia possibile potranno essere prese in considerazione opere comprensive o coesistenti da definire con apposite convenzioni con gli Enti competenti.

B.35. Utilizzare, ovve possibile, linee di trasmissione esistenti.

B.36. Seguire i criteri ERPA per i nuovi elettrogetti.

B.37. Utilizzare per l’allacciamento della rete elettrica di distribuzione, linee interrate lungo viabilità esistenti, con una profondità minima di 1 m, protette e accessibili nei punti di giunzione ed opportunamente segnalate. Solo in caso di motivata e documentata difficoltà tecnico-economica, considerare soluzioni alternative.
Tecnologia

FOTOVOLTAICO

LINEA DI SVILUPPO del PEAR: FER.1. Promuovere la realizzazione di impianti fotovoltaici su edifici ed aree industriali o degradate dal punto di vista ambientale e paesaggistico

<table>
<thead>
<tr>
<th>POTENZIALI INTERFERENZE</th>
<th>componenti ambientali</th>
<th>fattori antropici</th>
<th>fatt. soc-ec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promuovere la realizzazione di impianti fotovoltaici su edifici ed in aree industriali o degradate dal punto di vista ambientale e paesaggistico</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Gli impatti ambientali di un impianto fotovoltaico sono legati principalmente:
- agli aspetti paesaggistici, essendo presente una superficie vetrata, che può trasformare anche pesantemente la percezione del sito;
- all’occupazione di suolo, rilevante per impianti di taglia superiore a quella domestica;
- al conseguente impatto sulla copertura vegetale;
- al rifiuto di tipo speciale che si genera a fine ciclo vita (valutabile in circa 25 anni), che deve essere trattato da ditte specializzate anche al fine di recuperare il materiale riciclabile (65% in peso).

Il PEAR promuove azioni volte a minimizzare tali impatti tramite la realizzazione di impianti fotovoltaici su edifici ed aree industriali o degradate dal punto di vista ambientale e paesaggistico.

Un impatto potenziale su insetti e avifauna, dovuto alla rifrazione di vaste distese di pannelli, è emerso da alcuni studi (ad es. quello della National Fish and Wildlife Forensics Laboratory, California). La superficie a specchio può infatti essere scambiata come una distesa d’acqua, svolgendo un effetto attrofizzante su molte specie di invertebrati e di uccelli, con conseguente mortalità da impatto o da sursaldamento.

NOTE:
- Per i criteri di ammissibilità territoriale, paesistica e ambientale, si richiama integralmente quanto previsto dal capitolo “1. Impianti fotovoltaici” delle “LINEE GUIDA PER L’AUTORIZZAZIONE, LA VALUTAZIONE AMBIENTALE, LA REALIZZAZIONE E LA GESTIONE DEGLI IMPIANTI PER LO
SFRUTTAMENTO DELLE FONTI ENERGETICHE RINNOVABILI, DGR n. 1122/2012, che dettano condizioni per l’autorizzabilità degli impianti da fonti rinnovabili non solo dal punto di vista della valutabilità ambientale.

• Fatti salvi quindi i contenuti di tali “Linee Guida”, a cui si rimanda, di seguito sono presentati gli ulteriori approfondimenti quali contributo specifico del PEAR.

POTENZIALI INTERFERENZE

<table>
<thead>
<tr>
<th>principali ELEMENTI DI ATTEGGIAMENTO/MITIGAZIONE per singola componente/fattore interessato</th>
</tr>
</thead>
<tbody>
<tr>
<td>suolo</td>
</tr>
<tr>
<td>Impermeabilizzazione ed erosione del suolo</td>
</tr>
<tr>
<td>C.1. Conservare, nel caso di sistemazione al suolo, la massima permeabilità del terreno e realizzare opportune reti di drenaggio superficiale individuando il recupero finale e prevedendo le relative opere di manutenzione.</td>
</tr>
<tr>
<td>C.2. Prevedere sistematicamente opere di ingegneria naturalistica per la canalizzazione delle acque di riuscimento.</td>
</tr>
<tr>
<td>C.3. Rispettare tendenzialmente la morphologia dei suoli.</td>
</tr>
<tr>
<td>Contaminazione locale o diffusa</td>
</tr>
<tr>
<td>C.4. Garantire, all’atto della dispensa, il ripristino delle condizioni geo-ambientali presenti all’atto dell’installazione, evitando abbandoni di materiali.</td>
</tr>
<tr>
<td>biodiversità</td>
</tr>
<tr>
<td>Impatto sugli aspetti bionaturalistici</td>
</tr>
<tr>
<td>C.5. Porre estrema attenzione agli habitat presenti, con particolare riferimento a quelli interventi che possono interferire con le aree comprese nella Direttiva Habitat e Direttiva Uccelli, predisponendo in questo caso gli elaborati necessari alla Valutazione di Incidenza.</td>
</tr>
<tr>
<td>C.6. Considerare prioritariamente in fase progettuale le più opportune scelte tecnologiche atti a minimizzarne eventuali impatti sulla copertura vegetale.</td>
</tr>
<tr>
<td>C.7. Preferire, piuttosto che elementi tradizionali inclinati posati al suolo, strutture puntuiformi (cosiddette “ad albero”), anche con ampie aree di captazione, orientabili o ad inseguimento solare, che permettano il soleggiamento anche parziale del terreno posto al di sotto di esse che consentano comunque un corretto utilizzo vegetale del suolo</td>
</tr>
<tr>
<td>C.8. Prevedere l’impianto di specie vegetali/arboreo che richiedono scarsi insollamento o ombrivaghe, sfruttando anche la ridotta evaporazione al di sotto dei pannelli, eventualmente anche a fini agricoli.</td>
</tr>
<tr>
<td>C.9. Prevedere il recupero dell’acqua di condensa che si forma sui pannelli per l’irrigazione dell’area.</td>
</tr>
<tr>
<td>C.10. Garantire, all’atto della dispensa, il ripristino delle condizioni e agropedologiche presenti all’atto dell’installazione.</td>
</tr>
<tr>
<td>C.11. Valutare l’applicazione di accorgimenti atti a minimizzare l’“effetto specchio acqueo” per la fauna, ad esempio interrompendo le superfici riflettenti con strisce bianche o collocando fili colorati, sagome, o altri dissipatori per l’avifauna.</td>
</tr>
<tr>
<td>paesaggio</td>
</tr>
<tr>
<td>Impatto sul contesto paesaggistico, storico-architettonico e archeologico</td>
</tr>
<tr>
<td>C.12. Porre particolare attenzione progettuale al consistente impatto sul sistema dei beni paesaggistici e culturali tutelati che gli impianti fotovoltaici industriali per loro natura determinano.</td>
</tr>
<tr>
<td>C.13. Predisporre elaborati tecnici relativi alle procedure di VIA e Autorizzazione Paesaggistica che descrivano e consentano di valutare gli impatti, documentando alternative localizzative, tecnologiche e progettuali ed evidenziando con simulazioni e rendering l’impatto delle varie alternative.</td>
</tr>
<tr>
<td>C.14. Predisporre, da parte di soggetti abilitati, con riferimento alle possibili interferenze con il patrimonio archeologico, il relativo documento di valutazione (dati bibliografici e d’archivio, ricognizioni territoriali, fotointerpretazioni, cartografia storica, geomorfologia dei luoghi) e la carta del potenziale archeologico, da sottoporre alla Soprintendenza.</td>
</tr>
<tr>
<td>C.15. Fornire per gli impianti di grossa taglia o industriali, con riferimento agli impatti sui beni paesaggistici e culturali, siti UNESCO, percorsi storici e culturali, uno studio dettagliato dei coni ottici/percettivi volto alla valutazione degli impatti per la migliore localizzazione, al fine di evitare installazioni che, pur localizzate in ambiti degradati o di cava e discarica, possano impattare negativamente sulla percezione del contesto naturale e/o storico-architettonico, fornendo documentazione adeguata quali foto-panoramiche e foto-inserimenti.</td>
</tr>
<tr>
<td>C.16. Valutare attentamente l’eventuale effetto riflettente dei pannelli e il conseguente disturbo/interferenza rispetto al contesto (abbagliamento lungo viabilità, interazione visiva di tipo negativo con emergenze storico-architettoniche, etc.).</td>
</tr>
<tr>
<td>C.17. Considerare il possibile impatto paesaggistico degli impianti domestici. Sebbene l’occupazione di suolo per tali impianti sia minima, vista la limitata dimensione, è da preferire l’installazione sulle coperture pura rapportata alla tipologia dei fabbricati (copertura piana o copertura a falde, mantenendo l’inclinazione originale della copertura). Fornire inoltre attenta considerazione al possibile impatto paesaggistico soprattutto quando gli impianti vengano realizzati su coperture di fabbricati di interesse storico/etnografico, preferendo cellule fotovoltaiche totalmente integrate al manto di copertura e non meri pannelli integrati.</td>
</tr>
<tr>
<td>C.19. Considerare con attenzione l’utilizzo di fotovoltaico connesso alle serre:</td>
</tr>
<tr>
<td>a. in presenza di serre in esercizio potranno essere integrati pannelli fotovoltaici sulla copertura;</td>
</tr>
<tr>
<td>b. nel caso di complessi a serra dismessi, potranno essere utilizzate le falde correttamente esposte (orientate tendenzialmente a sud) provvedendo alla compensazione dell’impatto derivante da lo smontaggio e rimozione della contro falda e il contemporaneo inserimento di opportune piantumazioni tipiche della riviera (olivo, corbezzolo, alloro, ecc.) che in una visione da monter blocco l’impatto paesaggistico del sito.</td>
</tr>
<tr>
<td>C.20. Prevedere per gli impianti a terra l’inserimento perimetrale e l’interposizione fra le singole sequenze di pannelli, di piantumazioni tipiche della riviera (olivo, corbezzolo, alloro, ecc.), seguendo l’andamento del terreno al fine di non comportare modifiche dello stato attuale dei luoghi e delle eventuali testimonianze delle attività antropiche.</td>
</tr>
<tr>
<td>POTENZIALI INTERFERENZE</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>C.21. Preferire generalmente strutture "ad albero" e ad inseguimento solare piuttosto che strutture tradizionali appoggiate al suolo.</td>
</tr>
<tr>
<td>C.22. Ridurre e ottimizzare i volumi di servizio e/o tecnologici necessari per l'allacciamento alla rete, inserire tali volumi con una progettazione architettonica attenta all'inserimento tipologico e paesistico nel contesto territoriale di intervento.</td>
</tr>
<tr>
<td>C.23. Porre in atto misure mitigative (ad es. barriere verdi al perimetro) per gli impianti di grandi dimensioni e industriali.</td>
</tr>
<tr>
<td>C.24. Preferire per gli elettrodomestici dell'interramento rispetto alle linee aeree, e comunque in quest'ultimo caso prevedere la minimizzazione dell'impatto sul paesaggio, sia attraverso l'accurata progettazione dei tracciati che con l'utilizzo di manufatti a ridotta interferenza con il paesaggio.</td>
</tr>
<tr>
<td>C.25. Garantire, all'atto della dismissione, il ripristino delle condizioni presenti all'atto dell'installazione, ed effettuando migliorie paesaggistico-ambientali anche compensative.</td>
</tr>
</tbody>
</table>

Inquinamento elettromagnetico

C.26. Utilizzare, ove possibile, linee di trasmissione esistenti.

C.27. Seguire i criteri ERPA per i nuovi elettrodomestri.

C.28. Utilizzare per l'allacciamento alla rete elettrica di distribuzione, linee interrate lungo viabilità esistente, con una profondità minima di 1 m, protette e accessibili nei punti di giunzione ed opportunamente segnalate. Solo in caso di motivata e documentata difficoltà tecnico-economico, considerare soluzioni alternative.

Rifiuti

C.29. Preferire impianti con moduli fotovoltaici certificati

C.30. Preferire impianti con moduli fotovoltaici certificati

ULTERIORI CRITERI LOCALIZZATIVI E PRESTAZIONALI RISPETTO ALLE “LINEE GUIDA” - DGR N. 1122/2012

Fatto salvo quanto previsto dal capitolo “1. Impianti Fotovoltaici” delle “Linee Guida” - DGR n. 1122/2012, si evidenziano i seguenti elementi localizzativi e prestazionali:

- C.31. Localizzare, ove possibile, superfici fotovoltaiche nelle coperture di parcheggi, grandi superfici di vendita, magazzini, capannoni, edifici industriali, ecc. privilegiando sistematicamente l'integrazione architettonica.

- C.32. Considerare gli aspetti prestazionali delle diverse tipologie fotovoltaiche (moduli monocristallini, moduli policristallini, silicio amorfo, film sottile, moduli a concentrazione) al fine di scegliere la migliore soluzione tecnica per il caso specifico: ad es. i film sottili sono meno efficienti ma hanno inoltre vantaggi di utilizzo (producono meglio con luce diffusa, senza orientamento e inclinazione ottimali, con alte temperature e sono integrabili direttamente nelle coperture), i monocristallini lavorano invece meglio con luce diretta, con un angolo di incidenza ottimale e con temperature intorno ai 20-25 °C.

- C.33. Preferire quando possibile, per gli impianti a terra, sistemi ad inseguimento rispetto a quelli statici.

- C.34. Prevedere, per gli impianti a terra, l'adeguato ripristino sia morfologico che vegetazionale del sito al termine della vita utile dell'impianto.

- C.35. Valutare anche alternative al fotovoltaico per uso domestico con l'utilizzo di tecnologie innovative (come ad esempio il geotermico) o considerare l'accoppiamento del fotovoltaico con altre tecnologie (ad esempio fotovoltaico/geotermico al fine di sfruttare al meglio le due tecnologie).

42 Un pannello fotovoltaico a fine vita rappresenta un RAEE (Rifiuto di Apparecchiatura Elettrica ed Elettronica) regolato dal Dlgs n. 49/2014, Art. 40. Secondo la normativa, i dispositivi di raccolta e rifiuti fotovoltaici sono considerati RAEE domestici con smaltimento gratuito/zero.

43 A questo proposito ci si riferisce ai passati IV e V Conto Energia che, a seconda della tipologia (film sottile, silicio cristallino, moduli fotovoltaici a concentrazione), prevedevano moduli approvati e verificati da parte di appositi laboratori accreditati (norma UNI CEI EN ISO/IEC 17025) da Organismi di accreditamento appartenenti ad EA (European cooperation for Accreditation) o che abbiano stabilito accordi di mutuo riconoscimento con EA o in ambito IALC (International Laboratory Accreditation Cooperation). Le normative di certificazione si riferiscono alle seguenti: CEI EN 61215 per moduli fotovoltaici in silicio cristallino per applicazioni terrestri, CEI EN 61646 per moduli fotovoltaici a film sottile per applicazioni terrestri, CEI EN 62108 per moduli e sistemi fotovoltaici a concentrazione (CPV).

44 Ci si riferisce a quanto prevedeva il Conto Energia in relazione alle certificazioni in caso di impianto con "caratteristiche innovative" cioè realizzato con moduli speciali non convenzionali (ad esempio coppi fotovoltaici, finestre fotovoltaiche, ecc.) che sono stati progettati e costruiti specificatamente per integrarsi e sostituire elementi architettonici degli edifici, senza deturpare e impattare l'ambiente.

212
Scheda D

Tecnologia

SOLARE TERMICO

LINEA DI SVILUPPO del PEAR:
FER.8. Incrementare il ricorso alla tecnologia solare termica

TECNLOGIA

Gli impianti solari termici sfruttano l’energia del sole per riscaldare l’acqua o un altro fluido. Sono generalmente utilizzati per essere integrati all’impianto di riscaldamento o per la sola produzione di acqua calda sanitaria. Gli impianti sono costituiti da pannelli solari termici (piani o sotto vuoto), un serbatoio di accumulo e tubazioni varie di collegamento con l’impianto termico.

Gli impianti solari termici si possono dividere in quattro tipi:
- a circolazione naturale: riscaldandosi il fluido sale per convezione in un serbatoio di accumulo (boiler), che pertanto deve essere posto più in alto del pannello e a ridotta distanza dallo stesso,
- a circolazione forzata: una pompa fa circolare il fluido, generalmente glicole, dal pannello solare ad una serpentina posta all’interno del boiler dove avviene lo scambio termico con il resto dell’impianto. Presenta efficienza termica più elevata,
- a svuotamento: il sistema è analogo al quello a circolazione forzata, a differenza del fatto che l’impianto viene riempito e quindi usato solo quando è necessario,
- a concentrazione con inseguitore solare: in grado di concentrare i raggi solari in corrispondenza del fluido termoconduttore mediante specchi con una particolare forma parabolica. Consentono di raggiungere temperature più elevate (400 - 600°C), ma sfruttano solamente la radiazione diretta. Pertanto risultano convenienti nei climi molto caldi (poco nei climi moderati) e mal si prestano alla realizzazione di impianti su edifici e di piccola taglia.

PUNTI DI FORZA

Fonte di energia gratuita e a bassi costi di esercizio. Tecnologia semplice ed essenziale per produrre acqua calda sanitaria.

- Investimento dai costi contenuti e sufficientemente remunerativo (tempi di ritorno ragionevoli). Non occupa suolo: sfrutta superfici a tetto che altrimenti resteranno inutilizzate. Buone performance degli impianti in Liguria grazie al buon livello di irraggiamento del territorio ed all’esposizione su pendii rivolti a sud. La presenza in regione di aziende industriali specializzate nello sviluppo e nella fabbricazione di componenti e sistemi per impianti solari termici.

PUNTI DI DEBOLEZZA

Produce calore maggiormente in estate, quando la domanda di calore è minore. L’affidabilità dell’impianto dipende molto dalla competenza dell’installatore. L’installazione di impianti solari termici può risultare alquanto difficoltosa in fabbricati esistenti in quanto richiede la presenza di un accumulo di adeguate dimensioni ed un collegamento idraulico tra i pannelli, generalmente in copertura, e la centrale termica quasi sempre a piano terra o seminterrata. L’operazione è particolarmente complessa in condomini con abitazioni dotate di impianto di riscaldamento autonomo. La convenienza economica dipende dall’effettivo consumo del calore prodotto durante tutto l’anno, pertanto le installazioni su case abitate da residenti sono preferibili. L’impiego del solare termico per il riscaldamento richiede impianti progettati ad hoc (pannelli radianti), in quanto le temperature richieste sono insufficienti all’impiego con impianti tradizionali a radiatori. Filiera e mercato poco sviluppati in Italia. Conflitti con valori paesaggistici, architettonici e culturali che spesso ne limitano l’installazione. Scarsa consapevolezza nell’opinione pubblica sulla convenienza economica della tecnologia.

OPORTUNITÀ

Agevolazioni fiscali varate dal governo (Conto Termico e Detrazione fiscale al 65%).

MINACCE

Agevolazioni fiscali sull’acquisto di gas metano concesse proprio agli utenti che meglio potrebbero sfruttare il solare termico (centri sportivi, piscine, alberghi, ristoranti, ospedali, ecc.). L’attuale fase di crisi economica. Gap culturale: gli incentivi per il solare fotovoltaico hanno indotto l’opinione pubblica a focalizzare l’attenzione e privilegiare gli investimenti su impianti fotovoltaici, anche se generalmente meno convenienti degli investimenti sul solare termico.

STATO DI FATO

Non esistono dati certi sull’installato, in quanto gli impianti piccoli non necessitano di procedure amministrative tali da consentire un monitoraggio completo della fonte. Sulla base delle domande di detrazione fiscale del 55% e dei finanziamenti regionali dedicati sì ipotizza che il totale di pannelli solari termici installati in Liguria sia di circa 11 Mw con una produzione di circa 0,9 ktep.

SCENARIO DI PIANO

Tenendo conto della modesta potenza installata al momento sul territorio regionale, e valutando i potenziali di applicazione su edifici monofamiliari e condomini nuovi o ristrutturati con ACS (acqua calda sanitaria) centralizzata, la Regione Liguria assume cautelativamente un obiettivo di uso finale di calore dal solare termico al 2020 di 6 ktep/anno, che corrisponde ad un parco installato di circa 100 Mw. Tale stima, di natura conservativa, non tiene conto dell’utilizzo del solare termico per riscaldamento in nuove edificazioni.

POTENZIALI INTERFERENZE

<table>
<thead>
<tr>
<th>LINEA DI SVILUPPO del PEAR</th>
<th>componenti ambientali</th>
<th>fattori antropici</th>
<th>fatt. soc. - ec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FER.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incrementare il ricorso</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alla tecnologia solare termica</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Il solare termico si può considerare una delle tecnologie più semplici e pulite: infatti gli impatti generati da impianti solari termici, solitamente di dimensioni limitate (residenziali o di servizio a strutture pubbliche/commerciali), sono principalmente legati all’impatto visivo, specie se non integrati con il manufatto edilizio, e ai conseguenti effetti sul paesaggio e sul patrimonio architettonico a seconda del posizionamento dei pannelli. Solo nel caso di grandi impianti e di impianti solari termici a concentrazione (detti anche termodinamici) si hanno alcuni impatti di rilievo, ma tale
tipologia di impianti non è adatta ad applicazioni domestiche, essendo normalmente di grandi dimensioni ed elevata potenza. In quel caso gli impatti, specie su consumo di suolo e paesaggio, sono generalmente simili agli impianti fotovoltaici industriali. Occorre ricordare che gli impianti termodinamici sono piuttosto rari, con le attuali tecnologie destinate soprattutto a climi molto caldi e non di facile localizzazione nel contesto ligure.

<table>
<thead>
<tr>
<th>POTENZIALI INTERFERENZE</th>
<th>principali ELEMENTI DI ATTENZIONE/MITIGAZIONE per singola componente/fattore interessato</th>
</tr>
</thead>
<tbody>
<tr>
<td>suolo</td>
<td></td>
</tr>
</tbody>
</table>
| Impermeabilizzazione ed erosione del suolo | D.1. Conservare, nel caso di sistemazione al suolo, la massima permeabilità del terreno.
D.2. Realizzare la rete di drenaggio superficiale individuando il recapito finale e prevedendo le relative opere di manutenzione.
D.3. Prevedere sistematicamente opere di ingegneria naturalistica per la canalizzazione delle acque di riuscimento.
D.4. Rispettare tendenzialmente la morfologia del suolo. |
| Contaminazione locale o diffusa | D.5. Garantire, all’atto della disinmissione, il ripristino delle condizioni geo-ambientali presenti all’atto dell’installazione, evitando abbandoni di materiali. |

biodiversità
Solo per gli impianti di grossa taglia o industriali:
D.6. Considerare prioritariamente in fase progettuale le più opportune scelte tecnologiche atte a minimizzarne eventuali impatti sulla copertura vegetale.
D.8. Preferire, piuttosto che elementi tradizionali inclinati posati al suolo, strutture puntiformi (cosiddette “ad albero”), anche con ampie aree di captazione, orientabili o ad inseuimento solare, che permettano il soleggiamento anche parziale del terreno posto al di sotto di esse e che consentano comunque un corretto utilizzo vegetale del suolo.
D.10. Prevedere il recupero dell’acqua di condensa che si forma sui pannelli per l’irrigazione dell’area.
D.11. Garantire, all’atto della disinmissione, il ripristino delle condizioni e agropedologiche presenti all’atto dell’installazione.

paesaggio
Solo per gli impianti di grossa taglia o industriali:
D.13. Preferire nelle aree rurali la collocazione direttamente a copertura di fienili, ricoveri attrezzi, stalle, ecc., integrata nella struttura dei fabbricati (copertura piana o copertura a falde, mantenendo l’inclinazione originale della copertura).

Impatto sul contesto paesaggistico, storico-architettonico e archeologico
Solo per gli impianti di grossa taglia o industriali:
D.14. Porre particolare attenzione progettuale al consistente impatto sul sistema dei beni paesaggistici e culturali tutelati che gli impianti termodinamici industriali per loro natura determinano.
D.15. Prevedere elaborati tecnici relativi alle procedure di VIA e Autorizzazione Paesaggistica che descrivano e consentano di valutare gli impatti, documentando alternative localizzative, tecnologiche e progettuali ed evidenziando con simulazioni e rendering l’impatto delle varie alternative.
D.16. Fornire, con riferimento agli impianti sui beni paesaggistici e culturali, siti UNESCO, percorsi storici e culturali, uno studio dettagliato dei coni ottici/percettivi volto alla valutazione degli impatti per la migliore localizzazione, al fine di evitare installazioni che possano impattare negativamente sulla percezione del contesto naturale e/o storico-architettonico, fornendo documentazione adeguata quali foto-panoramiche e foto-inserimenti.
D.17. Porre in atto misure mitigative (ad es. barriere verdi al perimetro).
D.18. Garantire, all’atto della disinmissione, il ripristino delle condizioni presenti all’atto dell’installazione, ed effettuando migliorie paesaggistico-ambientali anche compensative.

ULTERIORI CRITERI LOCALIZZATIVI E PRESTAZIONALI
D.20. Dal punto di vista prestazionistico occorre ricordare che la più importante caratteristica di un impianto solare termico è di fornire acqua calda in assenza di emissioni inquinanti e climaterianti. In ogni caso, poiché quasi tutti i sistemi solari sono affiancati da apparecchi tradizionali, come le caldaie, difficilmente si può realizzare un impianto a emissioni zero. A questo obbiettivo ci si può avvicinare se l’impianto termico che affianca il sistema solare è costituito da una fonte di calore o da un impianto termico a biomassa, particolarmente indicati per impianti solari combinati per la produzione di acqua calda sanitaria e per il riscaldamento.

Solo per gli impianti di grossa taglia o industriali:
D.21. Per gli impianti di grossa taglia o industriali considerare come aree preferenziali siti già degradati da attività antropiche e/o da riquadrificar, tra cui
le ex cave prive di valori naturalisti.

D.22. Prevedere, per impianti a terra, un accurato piano relativo alla progettazione delle mitigazioni e delle compensazioni, e del ripristino del sito a fine vita dell’impianto.
Tecnologia BIOGAS

LINEA DI SVILUPPO del PEAR:
FER.4. Incrementare la produzione energetica da biogas da RSU

Si possono individuare tre tipologie principali di impianti a biogas a seconda della matrice organica da cui lo stesso è prodotto:
1. gas di discarica, prodotto dalla frazione organica dei rifiuti solidi urbani;
2. gas residuati, ottenuti dai fanghi di depurazione;
3. biogas prodotto da coltivazioni energetiche e/o da scarti delle attività agroindustriali (deiezioni animali, scarti di macellazione, scarti organici agroindustriali, etc) e/o dalla frazione organica degli RSU.

L’uso energetico dei biogas comporta importanti riduzioni delle emissioni di gas climalteranti in quanto, oltre a sostituire l’impiego di combustibili fossili, consente di evitare il rilascio in atmosfera del gas metano, generato comunque dalla fermentazione dei residui organici, indipendentemente dall’impianto. Il potere climalterante (GWP100 = Global Warming Potential a 100 anni) del metano è prossimo a 25 volte quello della CO2.

Un tipico impianto di biogas di trattamento di biomasse è costituito da diverse sezioni e componenti tecnologici:
- sezione di ricezione stoccaggio delle biomasse (trincee, vasche per l’acqua, vasche per i sottoprodoti vegetali);
- sistema di alimentazione dei substrati (pompe, tramogge, cocche, ecc.);
- digeratore anaerobico (vasca, copertura, sistema di riscaldamento, miscelatori, valvole di sicurezza, ecc.);
- trattamento biogas (deumidificazione, desolfurazione, filtrazione, ecc.);
- unità di cogenerazione (motore, alternatore, scambiatore, circuito raffreddamento, scarico fumi, ecc.);
- installazioni elettriche di allacciamento alla rete (quadr, cabina di trasformazione, contatori, ecc.);
- strumenti per l’automaione e il controllo;
- sezioni di stoccaggio del digestato (vasche chiuse per digestato talquale o chiarificato, piazzale coperto e tamponato per digestato solido).

Punti di forza
La sfruttamento del biogas da discarica è particolarmente importante non solo in quanto fonte rinnovabile, ma soprattutto perché limita il rilascio in atmosfera del gas metano, comunque generato dalla fermentazione dei residui organici in discarica, il cui potere climalterante è prossimo a 25 volte quello del CO2. Produzione di compost/ammandante. Tecnologia matura con filiera e mercato consolidato. Costi evitati per il trasporto dei rifiuti.

Punti di debolezza
L’orografia complessa e la limitatezsa del territorio ligure sono incompatibili con la diffusione di coltivazioni energetiche dedicate, cosicché il potenziale energetico regionale è principalmente legato all’utilizzo della frazione organica dei rifiuti per la produzione di biogas con processi di digestione anaerobica.

Opportunità
Possibile sfruttamento del potenziale energetico dei fanghi di depurazione. Favorisce la raccolta differenziata dei rifiuti con conseguente diminuzione dei volumi delle discariche indifferenziate e relativa minore incidenza a livello paesaggistico. Incentivi nazionali: tariffa omnicomprensiva con la quale il GSE acquista l’energia elettrica prodotta da biogas e Titoli di Efficienza Energetica (Certificati Bianchi), concessi per interventi di risparmio energetico qualora il biogas venga utilizzato per la produzione di calore in caldaie e cogeneratori.

Minacce
Possibili difficoltà nel collocare sul mercato il compost e/o ammandante ottenuto dal digestato, a causa del timore che il suo uso in agricoltura possa degradare o rendere insalubre il prodotto agricolo. Attualmente viene usato per la copertura delle discariche ed il ripristino ambientale.

La potenza efficiente lorda installata in Liguria, riferita al 2012, è di circa 21 MW, per una produtibilità media annua di circa 11 ktep (fonte: “Rapporto Statistico 2012 – Impianti a fonti rinnovabili” del GSE).

Lo scenario del PEAR al 2020 configura un obiettivo di produzione energetica da biogas pari a 16 ktep (31 MW di potenza installata), ottenuta dal trattamento della frazione organica dei rifiuti con processi di digestione anaerobica.

NOTE:
• Fatti salvi quindi i contenuti di tali “Linee Guida”, a cui si rimanda, di seguito sono presentati gli ulteriori approfondimenti quali contributo specifico del PEAR.

POTENZIALI INTERFERENZE

LINEA DI SVILUPPO del PEAR	componenti ambientali	fattori antropici	fatt. soc-ec.
fer.4 | Incrementare la produzione energetica da biogas da RSU | | | |
Dal punto di vista dell’impatto ambientale l’esperienza degli impianti realizzati ha portato a identificare come potenziali fasi critiche le seguenti:
- ricezione, stoccaggio e movimentazione delle biomasse in attesa del loro caricamento nell’impianto,
- conversione energetica del biogas (metanizzazione),
- trattamento e stoccaggio del digestato.

Diversi sono i tipi di impianti generati: fra i più rilevanti quelli relativi ad alcune matrici ambientali, all’impatto sulla filiera agronomica (fertilizzanti, consumo suolo fertile, ecc.), alla richiesta della biomassa e la conseguente necessità di colture dedicate con emissioni aggiuntive dovute al trasporto della biomassa stessa. Occorre ricordare che in questo caso la Linea di Sviluppo del PEAR è volta ad incrementare la produzione energetica da biogas da RSU, quindi non attraverso colture dedicate.

Sotto il profilo ambientale vanno considerate gli impatti su:
- emissioni in atmosfera e odori,
- rumore,
- traffico,
- utilizzazione energetica del biogas.

Alcune esperienze negative vissute in Italia, a seguito dell’attivazione dei primi impianti autorizzati, hanno posto in primo piano il tema degli odori come elemento critico e di forte impatto sul benessere stesso della cittadinanza. Il processo anaerobico di decomposizione della materia organica, se non governato efficacemente, può portare infatti alla formazione di odori sgradevoli. Altro potenziale impatto ambientale rilevante, in caso di utilizzazione il loco del biogas per produzione energetica, è legato alle emissioni in atmosfera contenenti principalmente NOx, CO2, CO. Al fine di limitare questo tipo di impatti è opportuno prevedere l’uso delle più avanzate tecnologie, soprattutto mirate ad una combustione di massima efficienza e a un abbattimento dei fumi.

(Si veda per questi aspetti anche la sezione “potenziali interferenze” della scheda relativa alle "Biomasse").

Nel caso in cui i residui vengano utilizzati per la produzione di compost occorre inoltre tenere in considerazione:
- il rischio di eccessiva concentrazione di eventuali metalli pesanti nel digestato,
- la presenza di residui di rifiuti non biodegradabili,
- la qualità e la carica batterica nei fanghi di risulta.

<table>
<thead>
<tr>
<th>POTENZIALI INTERFERENZE</th>
<th>principali ELEMENTI DI ATTENZIONE/MITIGAZIONE per singola componente/fattore interessato</th>
</tr>
</thead>
<tbody>
<tr>
<td>aria</td>
<td></td>
</tr>
<tr>
<td>emissivo, sia su scala</td>
<td>E.2. Stimare le emissioni in atmosfera in funzione dell’efficienza degli impianti di abbattimento.</td>
</tr>
<tr>
<td>locale che vasta, anche</td>
<td>E.3. Effettuare una modellazione delle ricadute a terra per la verifica dei potenziali impatti su recettori sensibili quali abitazioni e/o aree di pregio naturalistico.</td>
</tr>
<tr>
<td>cumulativi</td>
<td>E.4. Monitorare costantemente le emissioni degli impianti soggetti alle autorizzazioni ambientali (per impianti termici civili sopra i 35 kWt i limiti di emissione sono definiti dal Testo Unico dell’Ambiente – Allegato 1 alla Parte Quinta).</td>
</tr>
<tr>
<td>Emissioni olfattive</td>
<td>E.5. Effettuare verifiche/manutenzioni/sostituzioni periodiche dei sistemi di abbattimento e filtraggio.</td>
</tr>
<tr>
<td>suolo</td>
<td>E.6. Prevedere in fase progettuale opportuni accorgimenti tecnici per l’abbattimento delle emissioni olfattive, primo fra tutti lo stoccaggio insilato e/o lo stoccaggio in vasche/contenitori chiusi a tenuta, per i materiali da avvisarsi al digestore.</td>
</tr>
<tr>
<td>consumo/decaparramento</td>
<td>E.7. Definire in fase progettuale un’ampia capacità dei contenitori che deve essere calcolata in rapporto ai quantitativi di materiali trattati dall’impianto, considerando anche possibili fermi tecnici.</td>
</tr>
<tr>
<td>di suolo agricolo</td>
<td>E.8. Attuare alcune attenzioni gestionali che riguardano le sezioni impiantistiche considerate potenzialmente a rischio soprattutto per la generazione di odori:</td>
</tr>
<tr>
<td></td>
<td>a.a. ad esclusione degli insilati, limitare al minimo i tempi di stoccaggio dei materiali con tenore di sostanza secca < 60% (al massimo 72 ore e solo per esigenze manutentive eccezionali), in attesa del loro caricamento al digestore, al fine di prevenire fenomeni di anaerobiosi, fonte primaria di emissioni manifatturali rispetto al contesto ambientale.</td>
</tr>
<tr>
<td></td>
<td>b.evitar imbratamenti dei piazzali per perdite di materiale solido o di percolato;</td>
</tr>
<tr>
<td></td>
<td>c.in tutte le fasi di trasporto, carico, scarico dell’insilato, utilizzare mezzi chiusi e a tenuta e con apposita benna/trancia insilato; nel caso di scarico da autobotti il liquido deve essere immesso nel contenitore sotto al pelo libero oppure utilizzando un circuito chiuso;</td>
</tr>
<tr>
<td></td>
<td>d.condurre lo stoccaggio del digestato separato solido in cumuli di dimensioni contenute e periodicamente rivoltati per evitare fenomeni di anaerobiosi all’interno dei cumuli.</td>
</tr>
<tr>
<td></td>
<td>E.9. Effettuare, come per le emissioni inquinanti, verifiche/manutenzioni/sostituzioni periodiche degli specifici sistemi di trattamento e filtraggio.</td>
</tr>
<tr>
<td>acque</td>
<td></td>
</tr>
<tr>
<td>Consumo della risorsa</td>
<td>Nota: le azioni del PEAR non prevedono l’utilizzo di produzioni agricole energetiche, quindi non sussiste impatto sulla filiera idrica.</td>
</tr>
<tr>
<td>idrica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E.11. Preferire sistematicamente lo stoccaggio insilato e/o lo stoccaggio in vasche/contenitori chiusi a tenuta.</td>
</tr>
<tr>
<td></td>
<td>E.12. Gestire opportunamente la produzione e lo smaltimento del particolato.</td>
</tr>
</tbody>
</table>

#
potenziali interferenze

<table>
<thead>
<tr>
<th>principali ELEMENTI DI ATTENZIONE/MITIGAZIONE per singola componente/fattore interessato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminazione delle acque superficiali e di falda</td>
</tr>
<tr>
<td>E.15. Prevenire la formazione di percolato, evitando stoccaggi prolungati e contatti con acqua meteorica.</td>
</tr>
</tbody>
</table>

biodiversità

| Frammentazione degli habitat |
| 2.17. Evitare la frammentazione degli habitat, l’interruzione della connettività ecologica locale e le interferenze con la Rete Ecologica Regionale. |
| 2.18. Porre estrema attenzione agli habitat presenti, con particolare riferimento a quelli interventi che possono interferire con le aree comprese nella Direttiva Habitat e Direttiva Uccelli, predisponendo in questo caso gli elaborati necessari alla Valutazione di Incidenza. |
| 2.19. Favorire la localizzazione degli impianti e delle opere accessorie in aree servite da viabilità esistente, desumibile non solo da un’analisi cartografica ma anche da specifici sopralluoghi minimizzando le opere stradali o le modifiche alla preesistente viabilità. |

inquinamento acustico

| Impatto acustico su aree/edifici residenziali |
| 2.20. Analizzare in fase progettuale la compatibilità dell’opera con la zonizzazione acustica comunale e la valutazione di impatto acustico, verificando in sito i livelli assoluti e differenziali del rumore immesso nell’ambiente circostante. |
| 2.21. Attuare l’insonorizzazione dei macchinari che superano i livelli sonori consentiti e adottare accorgimenti progettuali; in particolare i moduli di cogenerazione che utilizzano il biogas per la produzione di energia elettrica e calore devono essere collocati all’interno di una sala motori costruita in modo da contenere adeguatamente l’impatto acustico. |

paesaggio

| Impatto sul contesto paesaggistico, storico-architettonico e archeologico |
| 2.22. Prevedere in generale sistematicamente la creazione di barriere verdi al perimetro con effetto schermante per l’impianto. |
| 2.23. In relazione agli impianti intervenire sistematicamente con schermature/mitigazioni: ad esempio, un filare di alberi formato da una specie arborea con chiome abbondanti, di adeguata dimensione e posizionato anche distante dall’opera, ma presso un punto di visibilità importante (ad es. un edificio storico). |
| 2.24. Predisporre elaborati tecnici relativi alle procedure di VIA e Autorizzazione Paesaggistica che descrivano e consentano di valutare gli impatti, documentando alternative localizzative, tecnologiche e progettuali ed evidenziando con simulazioni e rendering l’impatto delle varie alternative. |
| 2.25. Predisporre, da parte di soggetti abilitati, con riferimento alle possibili interferenze con il patrimonio archeologico, il relativo documento di valutazione (dati bibliografici e d’archivio, ricognizioni territoriali, fotointerpretazioni, cartografia storica, geomorfologia dei luoghi) e la carta del potenziale archeologico, da sottoporre alla Soprintendenza. |
| 2.26. Nel caso di utilizzo del biogas per produzione di energia, preferire per gli elettrodotti l’interramento rispetto alle linee aeree, e comunque in caso di tralci occorre prevederne la minimizzazione dell’impatto sul paesaggio sia attraverso l’accurata progettazione dei tracciati che con l’utilizzo di manufatti a ridotta interferenza. |
| 2.27. Utilizzare sistematicamente aree industriali o dismesse al fine di rendere l’intervento della centrale a biogas elemento riorganizzatore del territorio con opere di miglioramento dello stesso. |
| 2.28. Prevedere, per quanto possibile, in relazione agli specifici manufatti edilizi necessari per la realizzazione della centrale a biogas (serbatoi, serbatoi con chiusura a cupola, vasche per decantazione, ecc.) il loro interramento e la realizzazione di terrapieni arborati ad anello intorno agli stessi. |
| 2.29. Utilizzare sistematicamente, per quanto attiene i fabbricati destinati ai pretrattamenti, la copertura a verde anche di tipo estensivo e il sistematico utilizzo di paretì verdi (rampicanti, strutture autonome a sostegno di vitigni e similari, ecc.). |

inquinamento elettromagnetico

| Elettromagnetismo delle linee elettriche |
| 3.31. Seguire i criteri ERPA per i nuovi elettrodotti. |
| 3.32. Utilizzare per l’allaccio alla rete elettrica di distribuzione, linee interrate lungo viabilità esistente, con una profondità minima di 1 m, protette e accessibili nei punti di giunzione ed opportunamente segnalate. Solo in caso di motivata e documentata difficoltà tecnico-economica, considerare soluzioni alternative. |

fattori socio-economici

| Percezione e accettazione dell’impianto da parte della popolazione |
| 3.33. Attuare consistenti azioni di comunicazione e partecipazione della popolazione locale fin dalle prime fasi progettuali. |
| 3.34. Organizzare incontri con la popolazione locale ex-ante, in itinere ed ex-post, coinvolgendo i residenti delle aree limitrofe sul fronte occupazionale e sottolineando i vantaggi ambientali di una corretta gestione dell’impianto. |
| 3.35. Garantire ed evidenziare alla popolazione le opere mitigative e compensative da realizzarsi. |
| 3.36. Garantire la massima integrazione dell’impianto nel territorio circostante, adeguandosi alle esigenze dell’ecosistema ed assolvendo i dubbi della popolazione, senza trascurare nessuna obiezione sollevata dalle comunità locali. |
| 3.37. Garantire il monitoraggio complessivo svolto da ente terzo ed in particolare quello olfattivo attraverso Sistemi Olfattivi Artificiali (SOA) anche con la partecipazione della popolazione. |
| 3.38. Certificare l’impianto secondo lo standard EMAS e divulgare opportunamente la relativa dichiarazione ambientale periodica. |

Ulteriori criteri localizzativi e prestazionali rispetto alle “linee guida” - DGR N. 1122/2012

Fatto salvo quanto previsto dal capitolo “3. Impianti a Biomasse” delle “Linee Guida” - DGR n. 1122/2012 principalmente in relazione alla “biomassa grigia”, si evidenziano i seguenti elementi localizzativi e prestazionali:

anaerobica, in grado di trattare l’umido da indifferenziato, ma anche di essere agevolmente convertiti al trattamento della frazione umida da differenziata. Tale Piano stabilisce fra l’altro che il digestato sia inviato ad un processo di biostabilizzazione e separazione diventando compost di qualità oppure stabilizzato da utilizzare in discarica come terreno di copertura o infra-strato.

E.40. Localizzare gli impianti in bacini di utenza che ne possano realmente sostenere la messa in funzione, cercando di limitare al massimo i trasporti, fornendo uno studio specifico in fase autorizzativa.

E.41. Valutare la localizzazione degli impianti ed il loro apporto in termini di carico emissivo alla situazione locale, evitando situazioni cumulative.

E.42. Adottare elementi di sicurezza per l’utilizzazione energetica del biogas, quali ad es.: dotare l’impianto di dispositivi di sicurezza (torcia di emergenza o caldaia o un motore aggiuntivi) per la combustione del biogas quando quest’ultimo non è avviato ai consumi finali; adottare sistemi che evitino l’immissione in atmosfera del biogas non trattato attraverso l’utilizzo di combustibili supplementari (quando il biogas prodotto non ha sufficiente contenuto di metano per essere inviato al cogeneratore o per essere bruciato nella torcia di emergenza).

E.43. Attuare la certificazione secondo lo standard EMAS e attuare un preciso piano di monitoraggio con comunicazioni pubbliche periodiche (al minimo annuali) svolto da ente terzo.

E.44. Prevedere un accurato piano relativo alla progettazione delle mitigazioni e delle compensazioni, e del ripristino del sito a fine vita dell’impianto.
La definizione di biomassa prevista dalla Direttiva Europea 2009/28/CE è: "la frazione biodegradabile dei prodotti, rifiuti e residui di origine biologica provenienti dall’agricoltura (comprensivo sostanze vegetali e animali), dalla silvicoltura e dalle industrie connesse, comprese la pesca e l’acquacoltura, nonché la frazione biodegradabile dei rifiuti industriali e urbani". Nel presente Piano si fa riferimento prevalentemente alla Biomassa Legnosa.

Le biomasse possono essere utilizzate in impianti di produzione di energia elettrica e/o termica. Per quanto riguarda gli aspetti tecnologici, gli impianti a biomassa vanno dalle piccole caldaie autonome a cippato o a pellet per il riscaldamento invernale di singole abitazioni, fino agli impianti di cogenerazione e di gassificazione, passando per gli impianti di teleriscaldamento.

Punti di forza

E' presente in Liguria una significativa disponibilità teorica di biomassa locale e si evidenziano buone possibilità di creare una filiera di produzione ed utilizzo locale di cippato e pellet, per alimentare nuovi impianti di piccola e media taglia per la produzione di calore (caldaie a biomassa) e di cogenerazione, in particolare nelle aree interne del territorio.

Nel corso degli ultimi anni la Regione Liguria ha dimostrato grande attenzione al tema dello sfruttamento della biomassa legnosa anche come strumento per la tutela del fragile territorio ligure introducendo anche specifiche azioni giuridiche (ad es: Banca Regionale della Terra, DGR. N.1456/2014). Si è sviluppata anche una certa sensibilità nel riutilizzo della risorsa locale.

Punti di debolezza

L’orografia del territorio e la mancanza di una rete di viabilità forestale in grado di garantire un accesso razionale a tutte le aree forestali costituisce un punto di debolezza per la raccolta e l’approvvigionamento della biomassa legnosa. Si ravvisa inoltre una forte parcellizzazione delle proprietà dei terreni boschivi. Infine esiste una non trascurabile avversione delle comunità locali verso gli impianti di taglia maggiore generata dal timore che le relative emissioni possano risultare nocive alla salute e soprattutto dal sospetto che possano essere impiegati per incenerire anche rifiuti. Infine la concorrenza di biomassa estera e l’assenza di meccanismi di remunerazione dei servizi ecosistemici connessi all’utilizzo di biomassa locale (manutenzione del territorio) ostacolano lo sviluppo di una filiera di sfruttamento sostenibile del bosco in ambito regionale.

Opportunità

L’aumento del costo del combustibile da fonte fossile favorisce la diffusione di impianti a biomassa, soprattutto pellet e cippato. Nelle aree interne la creazione di una filiera energetica sostenibile del bosco non solo è funzionale alla soluzione di problemi gestionali del territorio (manutenzione, prevenzione dei disastri naturali quali frane, alluvioni ed incendi boschivi), ma può consentire una valorizzazione della risorsa che può essere di innesco per ulteriori attività imprenditoriali di tipo turistico, il cui valore aggiunto, legato ad una domanda attualmente inespresa, è potenzialmente superiore al semplice uso energetico.

Minacce

La concorrenza di biomassa legnosa a prezzi più competitivi proveniente da fuori regione e l’offerta informale di biomassa di origine non tracciata costituisce una minaccia per lo sfruttamento della biomassa locale.

Nonostante un elevato potenziale regionale di tale fonte (463 ktep) dichiarato dal PEAR 2003, dovuto alla rilevante copertura forestale del territorio ligure, per altro in aumento, questa risorsa non è stata pienamente sfruttata in questi anni. Infatti la produzione di energia da biomasse si attesta intorno ai 47 ktep (dato BER 2011).

L’obiettivo regionale di garantire il raggiungimento della quota di Burden Sharing attribuita alla Liguria non può attestarsi sotto i 181 ktep/anno.

La Regione ritiene quindi strategico disegnare un’azione da attivarsi nel breve termine per creare una significativa crescita nella domanda di energia da biomassa così da garantirsi nel breve periodo non solo il soddisfacimento dell’obiettivo Burden Sharing, ma anche un adeguato impulso a politiche territoriali integrate.

NOTE:

Fatti salvi quindi i contenuti di tali "Linee Guida", a cui si rimanda, di seguito sono presentati gli ulteriori approfondimenti quali contributo specifico del PEAR.

Tecnologia BIOMASSE

LINEA DI SVILUPPO del PEAR:

FER.7. Sostenere la diffusione di impianti a biomassa di piccola e media taglia attraverso lo sviluppo della filiera legno energia e l’utilizzo della biomassa locale

POTENZIALI INTERFERENZE

<table>
<thead>
<tr>
<th>LINEA DI SVILUPPO del PEAR</th>
<th>componenti ambientali</th>
<th>fattori antropici</th>
<th>fatt. soc-ecc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sostenere la diffusione di impianti a biomassa di piccola e media taglia attraverso lo sviluppo della filiera legno energia e l’utilizzo della biomassa locale</td>
<td>⚪ ⚪ ⚫ ⚫ ⚬ ⚫ ⚫</td>
<td>⚫</td>
<td>⚫</td>
</tr>
</tbody>
</table>

In termini generali la valorizzazione delle biomasse, quando è inserita e organizzata in un contesto di filiera ed efficiente valorizzazione di tutte le sue componenti, consente notevoli benefici di tipo ambientale e socio-economici sia a livello locale e territoriale che planetario. Ad esempio, l’uso energetico delle biomasse vegetali è considerato uno dei più efficienti sistemi per ridurre le emissioni di gas serra (come previsto dagli accordi di Kyoto)

#
del 1998), in quanto la CO₂ emessa durante la produzione di energia dalle biomasse è pari a quella assorbita durante la crescita delle piante, mentre i combustibili fossili utilizzati emettono CO₂ che si accumula nell’ambiente. Un altro importante contributo allo sviluppo sostenibile può derivare da un incremento dell’uso del legno e derivati in sostituzione di altri materiali il cui impiego risulterà più “costoso” sia energeticamente che per l’ambiente, sfruttandone il ruolo di “sequestratore” di CO₂ e la sua versatilità come materia prima; il tutto in un contesto di salvaguardia e miglioramento del sistema forestale.

In termini specifici i tipici impatti ambientali e paesaggistici provocati dalla filiera della biomassa comprendono:
- disboscamiento e depauperamento del territorio nel caso di gestione non corretta della filiera e conseguenti effetti sul paesaggio,
- interferenze con eventuale flora e fauna nelle aree di approvvigionamento della materia prima,
- trasporto delle biomasse,
- impatti legati alla realizzazione di eventuali opere infrastrutturali necessarie allo sviluppo della filiera,
- impatti provocati dalle attività di raccolta,
- impatti provocati dal trasporto delle zone di raccolta agli impianti e del successivo stoccaggio per quanto attiene particolarmente gli effetti sul paesaggio,
- aspetti otfattivi ed emissioni di inquinanti.

In particolare, per quest’ultimo punto, si possono produrre emissioni solide (particolato e idrocarburi incombusti), liquide e gassose. Le emissioni di particolato sono in genere le più rilevanti, mentre per gli altri inquinanti i livelli dipendono dal tipo di combustibile usato dall’impianto e dall’efficienza della combustione. Gli inquinanti emessi sono quelli tipici di ogni processo di combustione: monossido di carbonio (CO), composti organici volatili (COV), ossidi di zolfo (SOₓ), ossidi di azoto (NOₓ), particolato (PM₁₀ e PM₂,₅) e gas acidi (HCl, H₂SO₄, HNO₃), a seconda delle componenti della biomassa; idrocarburi policiclici aromatici (IPA) e dionisiure furane (PCDD/PCDF) a causa dell’incompletaza del processo di combustione.

La composizione del particolato è in larga parte determinata dall’efficienza della combustione e dalla tipologia di biomassa impiegata. Un particolare problema è l’alta concentrazione di polveri ultrassottili (<1 micron) nei fumi: è di entità maggiore negli impianti domestici ma riguarda anche i grandi impianti termoelettrici alimentati con biomasse legnose, che devono essere dotati di sistemi di abbattimento molto performanti. Per i composti organici volatili si verificano emissioni inferiori nei sistemi di combustione più innovativi, a conferma della riduzione delle emissioni di COV all’aumentare dell’efficienza di combustione. La produzione di dionisiure e furane può essere minimizzata assicurando una combustione il più completa possibile, condotta con un basso eccesso di ossigeno, a temperature superiori ad 800°C e utilizzando biomassa con una bassa concentrazione di cloro. Altri impatti ambientali comuni all’utilizzo di biomasse/bioliqüidi e biogas, sono legati a:
- trasporto: la capacità dei mezzi utilizzati e la distanza tra il luogo di produzione e il sito di trasformazione e/o combustione incidono sulla percorrenza media dei mezzi e quindi, indirettamente, sulla quantità di emissioni rilasciate in atmosfera;
- possibile produzione di odori, soprattutto nelle aree di accumulo e movimentazione delle biomasse putrescibili;
- scelta delle colture a scopo energetico (CSE), infatti accanto a benefici vi sono anche impatti negativi, quali la competizione con le colture alimentari, l’effettiva disponibilità di suoi agricoli, l’utilizzo considerabile di risorse idriche e di fertilizzanti. A tal proposito la Direttiva 2009/28/CE stabilisce quali siano i criteri di sostenibilità da rispettare nella produzione di energia dalla biocarburanti/bioliqüidi. Rispetto a quest’ultimo punto occorre ricordare che in questo caso la Linea di Sviluppo del PEAR è volta ad incrementare la produzione energetica senza ricorrere a colture dedicate. Favorire la filiera legno-energia locale ha infatti grosse potenzialità, anche se il problema dell’accesso alle risorse forestali è reale, essendo la Regione Liguria connotata da una morfologia del territorio caratterizzata da versanti a volte particolarmente ripidi e con difficoltà di accesso. Vengono quindi a crearsi due categorie di problemi:
- una legata alla silvicoltura in senso stretto che, oltre ovviamente evitare il “taglio raso”, deve cercare di preservare anche a livello paesaggistico la risorsa bosco,
- una legata alle strade forestali che posso comportare impatti anche notevoli sul paesaggio.

Questi due problemi devono quindi essere considerati nella gestione delle risorse forestali.

<table>
<thead>
<tr>
<th>POTENZIALI INTERFERENZE</th>
<th>principali ELEMENTI DI ATTENZIONE/MITIGAZIONE per singola componente/fattore interessato</th>
</tr>
</thead>
<tbody>
<tr>
<td>aria</td>
<td></td>
</tr>
<tr>
<td>Effetti di carattere</td>
<td></td>
</tr>
<tr>
<td>emissivo, sia su scala</td>
<td>F.1. Privilegiare, per l’utilizzo di impianti domestici o assimilabili ad essi, caldaie a biomassa che prevedano l’uso di pellet.</td>
</tr>
<tr>
<td>locale che vasta, anche</td>
<td>F.2. Verificare in fase progettuale l’eventuale ulteriore apporto emissivo rispetto al contesto, evitando effetti cumulativi.</td>
</tr>
<tr>
<td>cumulativi</td>
<td>F.3. Stimare le emissioni in atmosfera in funzione dell’efficienza degli impianti di abbattimento.</td>
</tr>
<tr>
<td></td>
<td>F.4. Effettuare una modellazione delle ricadute a terra per la verifica dei potenziali impatti su recettori sensibili quali abitazioni o aree di pregio naturalistico.</td>
</tr>
<tr>
<td></td>
<td>F.5. Monitorare costantemente le emissioni degli impianti soggetti alle autorizzazioni ambientali (per impianti termici civili sopra i 35 kWt i limiti di emissione sono definiti dal Testo Unico dell’Ambiente – Allegato 1 alla Parte Quinta).</td>
</tr>
<tr>
<td>Emissioni olfattive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.9. Attuare opportune attenzioni gestionali che riguardino le sezioni impiantistiche considerate potenzialmente a rischio soprattutto per la generazione di odori, limitando al minimo i tempi di stoccaggio.</td>
</tr>
<tr>
<td></td>
<td>F.10. Effettuare, come per le emissioni inquinanti, verifiche/manutenzioni/sostituzioni periodiche degli specifici sistemi di abbattimento e filtraggio.</td>
</tr>
<tr>
<td>suolo</td>
<td></td>
</tr>
<tr>
<td>Consumo/</td>
<td>Nota: le azioni del PEAR non prevedono l’utilizzo di produzioni agricole energetiche, quindi non ossistete impatto sulla filiera.</td>
</tr>
<tr>
<td>POTENZIALI INTERFERENZE</td>
<td>principali ELEMENTI DI ATTENZIONE/MITIGAZIONE per singola componente/fattore interessato</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>depauperamento di suolo agricolo</td>
<td>agronomica (fertilizzanti, consumo suolo fertile, ecc.).</td>
</tr>
<tr>
<td>Contaminazione locale o diffusa</td>
<td>F.12. Garantire, all’atto della dismissione dell’impianto, il ripristino delle condizioni geo-ambientali presenti all’atto dell’installazione, evitando abbandoni di materiali.</td>
</tr>
</tbody>
</table>

acqua

| Contaminazione delle acque superficiali e di falda | F.16. Prevenire la formazione di percolato, evitando stoccaggi prolungati e contatti con acque meteoriche. F.17. Utilizzo in tutte le fasi produttive di opportuna pavimentazione, impermeabilizzata e sagomata in modo da favorire il rapido sgondo di eventuali percolati che dovranno essere opportunamente trattati. |

inquinamento acustico

| Impatto acustico su aree/edifici residenziali | F.18. Analizzare in fase progettuale la compatibilità dell’opera con la zonizzazione acustica comunale e la presenza di recettori sensibili potenzialmente impattati; effettuare una valutazione di impatto acustico, verificando in sito i livelli assoluti e differenziali del rumore immesso nell’ambiente circostante. F.19. Attuare l’insonorizzazione dei macchinari che superano i livelli sonori consentiti e adottare accorgimenti progettuali opportuni. |

biodiversità

paesaggio

| Impatto su habitat forestali | F.26. Incentivare l’utilizzo di tutte le tecniche che permettano di abbassare l’impatto delle operazioni connesse alle utilizzazioni nelle fasi di esbosco e concentramento (gru a cavo, risine, etc.). F.27. Corretta programmazione delle utilizzazioni forestali al fine di ridurre gli impatti sul suolo, gli effetti negativi alla fauna selvatica durante il periodo di riproduzione e migrazione; limitazioni alle attività in aree di riproduzione di specie importanti (es. rapaci o Tetraonidi, Chiroteri o altre specie tutelate dalle Direttive Europee). F.28. Utilizzare combustibili a basso impatto ambientale, benzine alcoliche (benzine ecologiche specifiche per motori a due tempi), oli vegetali per il diesel, lubrificanti ecologici per mezzi meccanici in particolare motoseghe. F.29. Prevedere per una frazione residua della produzione cippatura e/o triturazione, distribuzione e spandimento al suolo per favorire una rapida decomposizione e apporto di sostanza organica; mantenere al suolo biomassa legnosa (anche in parte cippata/triturata) per favorire fenomeni di decomposizione naturale e apporto di sostanze organiche al suolo. F.30. Rilasciare, per favorire la fauna locale, piante morte di dimensioni significative, in numero maggiore rispetto a quanto previsto dalla normativa vigente ma tali da non favorire possibili incendi boschivi. F.31. Proteggere e salvaguardare le specie forestali rare e sporadiche. F.32. Diversificare la composizione e la struttura forestale per migliorarne il rendimento mediante opportuni piani forestali. F.33. Assicurare il rinnovamento delle specie più sensibili ed importanti in riferimento alla tipologia forestale/habitat in cui si interviene. F.34. Garantire il mantenimento delle coperture boschive in presenza di zone umide di rilevanza per la biodiversità. |

| Impatto nel contesto paesaggistico, storico, architettonico e archeologico | F.35. Mantenere la lettura delle masse boschive con riferimento agli impatti sui beni paesaggistici e culturali, siti UNESCO, percorsi storici e culturali, se del caso predisponendo una significativa fascia di transizione rispetto alle aree soggette a taglio. In tale fascia potranno essere operati solo tagli selettivi o di riqualificazione. F.36. Prevedere in generale sistematicamente la creazione di barriere verdi al perimetro con effetto schermante per l’impianto. F.37. In relazione agli impianti intervenire sistematicamente con schermature/mitigazioni: ad esempio, un filare di alberi formato da una specie arborea locale con chiome abbondanti, di adeguata dimensione e posizionato anche distante dall’opera, ma presso un punto di visibilità importante (ad es. un edificio storico). F.38. Predisporre elaborati tecnici relativi alle procedure di VIA e Autorizzazione Paesaggistica che descrivano e consentano di valutare gli impatti, documentando alternative localizzative, tecnologiche e progettuali ed evidenziando con simulazioni e rendering l’impatto delle varie alternative. F.39. Predisporre, da parte di soggetti abilitati, con riferimento alle possibili interferenze con il patrimonio archeologico, il relativo documento di valutazione (dati bibliografici e d’archivio, ricognizioni territoriali, fotointerpretazioni, cartografia |

#
POTENZIALI INTERFERENZE
<table>
<thead>
<tr>
<th>principali ELEMENTI DI ATTENZIONE/MITIGAZIONE per singola componente/fattore interessato</th>
</tr>
</thead>
<tbody>
<tr>
<td>storica, geomorfologia dei luoghi e la carta del potenziale archeologico, da sottoporre alla Soprintendenza.</td>
</tr>
<tr>
<td>F.40. Porre particolare attenzione all’utilizzo della biomassa forestale in quanto le aree boschate sono ope legis aree vincolate.</td>
</tr>
<tr>
<td>F.41. Utilizzare sistematicamente aree industriali o dismesse al fine di rendere l’intervento della centrale a biogas elemento riorganizzatore del territorio con opere di miglioramento dello stesso.</td>
</tr>
<tr>
<td>F.42. Preferire per gli elettrodoti l’interramento rispetto alle linee aeree, e comunque in caso di linee aeree occorre prevederne la minimizzazione dell’impatto sul paesaggio sia attraverso l’accurata progettazione dei tracciati che con l’utilizzo di manufatti a ridotta interferenza.</td>
</tr>
<tr>
<td>F.43. I fabbricati necessari per l’utilizzo di tali risorse sono in linea teorica sempre compatibili con il PTCP salvo le aree di conservazione. Occorre che gli stessi abbiano una configurazione per quanto possibile rapportabili ai fabbricati rurali tipici della zona (utilizzo massivo del legno, muratura preferibilmente pietra faccia a vista e copertura a capanna).</td>
</tr>
</tbody>
</table>

inquinamento elettromagnetico

<table>
<thead>
<tr>
<th>Elettromagnetismo delle linee elettriche</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.44. Utilizzare, ove possibile, linee di trasmissione esistenti.</td>
</tr>
<tr>
<td>F.45. Seguire i criteri ERPA per i nuovi elettrodoti.</td>
</tr>
<tr>
<td>F.46. Utilizzare per l’allacciamento alla rete elettrica di distribuzione, linee interrate lungo viabilità esistente, con una profondità minima di 1 m, protette e accessibili nei punti di giunzione ed opportunamente segnalate. Solo in caso di motivata e documentata difficoltà tecnico-economici, considerare soluzioni alternative.</td>
</tr>
</tbody>
</table>

fattori socio-economici

<table>
<thead>
<tr>
<th>Percezione e accettazione dell’impianto da parte della popolazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.47. Attuare consistenti azioni di comunicazione e partecipazione della popolazione locale fin dalle prime fasi progettuali.</td>
</tr>
<tr>
<td>F.48. Organizzare incontri con la popolazione locale ex-ante, in itinere ed ex-post, coinvolgendo i residenti delle aree limitrofe sul fronte occupazionale e sottolineando i vantaggi ambientali di una corretta gestione dell’impianto.</td>
</tr>
<tr>
<td>F.49. Garantire ed evidenziare alla popolazione le opere mitigative e compensate da realizzarsi.</td>
</tr>
<tr>
<td>F.50. Garantire la massima integrazione dell’impianto nel territorio circostante, adeguandosi alle esigenze dell’ecosistema ed ascoltando i dubbi della popolazione, senza trascurare nessuna obiezione sollevata dalle comunità locali.</td>
</tr>
<tr>
<td>F.51. Garantire il monitoraggio complessivo svolto da ente terzo ed in particolare quello olfattivo attraverso Sistemi Olfattivi Artificiali (SOA) anche con la partecipazione della popolazione.</td>
</tr>
<tr>
<td>F.52. Certificare l’impianto secondo lo standard EMAS e divulgare opportunamente la relativa dichiarazione ambientale periodica.</td>
</tr>
</tbody>
</table>

ULTERIORI CRITERI LOCALIZZATIVI E PRESTAZIONALI RISPETTO ALLE “LINEE GUIDA” - DGR N. 1122/2012

Fatto salvo quanto previsto dal punto “3. Impianti a Biomasse” delle “Linee Guida” - DGR n. 1122/2012 relativamente alla “biomassa verde”, si evidenziano i seguenti elementi localizzativi e prestazionali:

- **F.53.** Considerare quanto contenuto all’interno del Programma Forestale Regionale – PFR (attualmente in corso di aggiornamento), ed in particolare lo “Strumento Operativo 7 – Indicazioni per lo sviluppo della filiera bosco-energia”.
- **F.54.** Realizzare impianti di media taglia localizzati in contesti territoriali che ne possano realmente supportare la messa in funzione e garantire l’approvvigionamento, oltre che sostenere economicamente i costi per la loro corretta gestione.
- **F.55.** Valutare la localizzazione degli impianti ed il loro apporto alla situazione locale in termini di carico emissivo, evitando situazioni cumulative.
- **F.56.** Preparare la certificazione secondo lo standard EMAS e attuare un preciso piano di monitoraggio con comunicazioni pubbliche periodiche (al minimo annuali) svolto da ente terzo.
- **F.57.** Prevedere un accurato piano relativo alla progettazione delle mitigazioni e delle compensazioni, e del ripristino del sito a fine vita dell’impianto.

223
La cogenerazione rappresenta la produzione congiunta e contemporanea di energia elettrica (o meccanica) e calore utile, a partire da una singola fonte energetica, attuata in un unico sistema integrato. Sfruttando il calore refluvo reso disponibile dai sistemi di raffreddamento di un propulsore termico (comunque prodotto, ma al momento disperso nell’ambiente), la cogenerazione realizza di fatto un più efficiente utilizzo dell’energia primaria, con relativi risparmi economici soprattutto nei processi produttivi in cui esista una forte contemporaneità tra prelievi elettrici e termici.

Nel caso della trigenerazione, la combinazione di un impianto cogenerativo con un gruppo frigorifero ad assorbimento, in grado di trasformare il calore refluvo proveniente dal cogeneratore, consente di realizzare impianti in grado di fornire le tre principali forme di energia richieste in ambito civile, ovvero energia elettrica, termica e frigorifera. È opportuno distinguere due ambiti di mercato con caratteristiche molto diverse:

a) la grande cogenerazione/trigenerazione installata nelle centrali termiche che alimentano grandi reti urbane di teleriscaldamento e/o teleraffrescamento, oppure grandi utenze industriali particolarmente energivore;

b) la generazione distribuita che, attraverso mini e micro-impianti, alimenta singole strutture utente di dimensioni appropriate (>100 kW, tipo ospedali, centri commerciali, industrie ecc.).

<table>
<thead>
<tr>
<th>Punti di forza</th>
<th>Punti di debolezza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maggiore efficienza energetica, risparmio di fonte energetica primaria e conseguente risparmio economico.</td>
<td>Maggiore complessità dell’impiantistica (rispetto ad una normale caldaia) e maggiore impegno richiesto per la gestione e manutenzione degli impianti. Costo d’investimento elevato. Per assicurare adeguati ritorni economici, occorre che l’energia elettrica sia prevalentemente autoconsumata dall’utente autoproduttore, e che la domanda termica non sia limitata ad una sola stagione, in modo da consentire tempi di esercizio che, nel caso della cogenerazione, superino almeno le 4.500 ore l’anno. Nel caso della trigenerazione la domanda di freddo deve essere presente quasi tutto l’anno.</td>
</tr>
</tbody>
</table>

Minacce: Aumenti di costo del combustibile specifico nel caso di utilizzo del gas metano. Discontinuità nelle normative di mercato e nelle agevolazioni (Certificati Bianchi, SEU, ecc.). Agevolazioni fiscali (per esempio esenzioni alle acquisite) concesse a favore di categorie di utenze particolarmente promettenti per la generazione distribuita quali ristoranti ed alberghi, piscine e centri sportivi, ecc. Scarsa consapevolezza e conoscenza della tecnologia.

Nonostante l’elevato potenziale regionale in termini di utenze potenzialmente servibili (grandi condomini, centri direzionali e commerciali, alberghi ed ospedali), in Liguria al momento il potenziale di queste tecnologie è sfruttato solo in minima parte.

STATO DI FATTO

Gli impianti di cogenerazione e trigenerazione concorreranno al raggiungimento dell’obiettivo di efficienza energetica del PEAR 2014 – 2020, pari a 332 ktep. Nei prossimi anni la Regione Liguria intende promuovere lo sviluppo di progetti che prevedano l’applicazione di queste tecnologie; ai fini dello sviluppo di distretti urbani caratterizzati da un uso efficiente dell’energia la Regione potrà intervenire attraverso specifici finanziamenti anche in coerenza con le priorità individuate nel programma “Horizon 2020” dedicato alle “Smart Cities and Communities”.

POTENZIALI INTERFERENZE

<table>
<thead>
<tr>
<th>LINEA DI SVILUPPO del PEAR</th>
<th>componenti ambientali</th>
<th>fattori antropici</th>
<th>fatt. soc-ec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE4. FAVORERSI l’installazione di sistemi tecnologici avanzati con impianti di cogenerazione e trigenerazione, teleriscaldamento e teleraffrescamento</td>
<td>aaa</td>
<td>acos</td>
<td>soc-ec</td>
</tr>
</tbody>
</table>
I tipi di impatti ambientali provocati dalla cogenerazione comprendono:
• rumore e vibrazioni,
• emissions in atmosfera, contenenti CO₂ quale gas climaterante, ed inquinanti atmosferici, principalmente NOx (ossidi di azoto) e CO (monossido di carbonio) oltre ad altre componenti dipendenti dal materiale combusto
• calore refluo.
Gli impatti ambientali sull’aria di questo tipo di tecnologia sono comunemente inferiori a quelli prodotti da impianti di generazione di energia elettrica e termica separati di tipo tradizionale.
Limitatamente alla trigenerazione in servizio di raffreddamento, sono presenti emissioni di calore refluo a bassa temperatura (<40°C) attraverso torri e/o sistemi di raffreddamento (generalmente installati sui tetti delle strutture edili ospitanti gli impianti).
Gli effetti su paesaggio dipendono dalla soluzione tecnologia utilizzata per la produzione di energia: si rimanda per questo aspetto alle specifiche schede di questo Allegato.

<table>
<thead>
<tr>
<th>POTENZIALI INTERFERENZE</th>
<th>principali ELEMENTI DI ATTENZIONE/MITIGAZIONE per singola componente/fattore interessato</th>
</tr>
</thead>
<tbody>
<tr>
<td>aria</td>
<td></td>
</tr>
<tr>
<td>emissivo, sia su scala</td>
<td>G.2. Monitorare costantemente le emissioni degli impianti soggetti alle autorizzazioni ambientali (per impianti termici civili sopra i 35 kWt i limiti di emissione sono definiti dal Testo Unico dell’Ambiente – Allegato 1 alla Parte Quinta).</td>
</tr>
<tr>
<td>locale che vasta, anche</td>
<td>G.3. Effettuare verifiche/manutenzioni/sostituzioni periodiche dei sistemi di abbattimento e filtraggio.</td>
</tr>
<tr>
<td>cumulativi</td>
<td></td>
</tr>
<tr>
<td>Calore refluo</td>
<td>G.4. Effettuare una accurata progettazione di torri/sistemi di raffreddamento per diminuire al massimo la temperatura del calore refluo ed evitare effetti di “isola di calore”.</td>
</tr>
<tr>
<td>paesaggio</td>
<td></td>
</tr>
<tr>
<td>Impatto sul contesto</td>
<td>Nota: per gli effetti su paesaggio si rimanda alle specifiche schede di questo Allegato, dipendendo dalla soluzione tecnologia utilizzata per la produzione di energia.</td>
</tr>
<tr>
<td>paesaggistico, storico-</td>
<td></td>
</tr>
<tr>
<td>architettonico e</td>
<td></td>
</tr>
<tr>
<td>archeologico</td>
<td></td>
</tr>
<tr>
<td>acustica</td>
<td></td>
</tr>
<tr>
<td>Impatto acustico su</td>
<td>G.5. Analizzare in fase progettuale la compatibilità dell’opera con la zonizzazione acustica comunale e la presenza di recettori sensibili potenzialmente impattati; effettuare una valutazione di impatto acustico, verificando in sito i livelli assoluti e differenziali del rumore immesso nell’ambiente circostante.</td>
</tr>
<tr>
<td>are-e/edifici resi-</td>
<td>G.6. Analizzare in fase progettuale l’opportunità di attuare misure quali l’insonorizzazione dell’impianto e l’inserimento di supporti antivibranti.</td>
</tr>
<tr>
<td>denziali</td>
<td></td>
</tr>
<tr>
<td>ULTERIORI CRITERI LOCALIZZATIVI E PRESTAZIONALI</td>
<td></td>
</tr>
</tbody>
</table>
Tecnologia

TELERISCALDAMENTO/TELERAFFRESCAMENTO

LINEA DI SVILUPPO del PEAR: EE.4. Favorire l’installazione di sistemi tecnologici avanzati quali impianti di cogenerazione e trigenerazione, teleriscaldamento e teleraffrescamento

TECNOLGIA

Con teleriscaldamento/teleraffreddamento si intende una rete di tubazioni, quasi sempre a circuito chiuso che permette di trasportare calore/freddo a distanza (tramite fluidi termolettori quali acqua calda, acqua surriscaldata e vapore) fino ai singoli utilizzatori. Il calore/freddo distribuito all’utenza viene prodotto da apposite centrali ad alta efficienza o recuperato da stabilimenti dedicati a scopi produttivi diversi (per esempio centrali termoelettriche).

Il calore prodotto viene trasportato attraverso le reti di teleriscaldamento, viene quindi ceduto agli utenti attraverso appositi scambiatori di calore, contabilizzato con appositi strumenti di misura e quindi periodicamente fatturato all’utenza.

L’esercizio commerciale di una rete di teleriscaldamento o teleraffrescamento richiede le seguenti operazioni:

- produzione calore/freddo;
- trasporto e distribuzione a distanza;
- cessione all’utenza;
- contabilizzazione e fatturazione.

Punti di forza

Presenza in Liguria di imprese industriali e competenze specializzate nel settore del teleriscaldamento e teleraffrescamento. Presenza di bacini d’utenza termica (calore e freddo) di dimensioni e densità appropriate (quartieri densamente popolati, grandi centri direzionali del terziario, grandi centri commerciali e strutture espositive, università, industrie ecc.) e che consentono all’infrastruttura di rete di raggiungere la convenienza economica.

Punti di debolezza

Costo d’investimento per la rete molto elevato e difficoltà nel recuperare l’elevato investimento iniziale (tempi di ritorno lunghi). Tempi lunghi nella realizzazione della rete e dell’impiantistica; necessità di pianificare la rete con molti anni di anticipo. Problemi legati alla pianificazione delle utenze termiche che devono poter essere pianificate con affidabilità e con lungo anticipo. Il bacino di utenza deve essere individuato entro un raggio massimo di tre km in linea d’aria dalla centrale di generazione. Necessità in ambito urbano di scavi per la posa delle tubazioni, con conseguenti disagi per il traffico e per la cittadinanza. Necessità di manutenzione della rete che negli anni tende a degradare, aumentando le perdite di calore/freddo, a diventare meno efficiente.

Opportunità

L’aumento generale del costo di petrolio e combustibili fossili favorisce la diffusione di sistemi maggiormente efficienti che pertanto, a parità di servizio energetico, reso, consentono di ridurre i consumi di combustibile (fonte energetica primaria).

Le moderne tecnologie cosiddette “smart” consentono oggi un elevato grado di automazione e telecontrollo sia nella gestione e manutenzione di questi impianti da parte dell’esercente, che nella gestione dell’utenza, lettura contatori e fatturazione del servizio.

Gli “smart meter” (contatori intelligenti) finora disponibili sul mercato per il solo servizio elettrico, oggi sono disponibili anche per il servizio calore e freddo. In questo modo diventa possibile passare ad una contabilizzazione e fatturazione del servizio non più forfettaria, bensì basata sui consumi effettivi, creando in questo modo un forte stimolo per l’utente finale a risparmiare energia.

Minacce

Utenti che, al momento del completamento e della messa in servizio della rete, si rifiutano di allacciarsi per fruire (a pagamento) del servizio, impedendo in questo modo il recupero dell’investimento. Data la natura a lungo termine dell’investimento, incertezze e/o discontinuità nelle normative e nelle regole di mercato generano rilevanti problemi economici. Agevolazioni fiscali (per es. esenzioni accise sul metano) concesse a favore di alcune categorie di utenze particolarmente energivore (per es. ristoranti ed alberghi, piscine e centri sportivi, ecc.) che costituiscono un potenziale bacino di utenti per queste soluzioni tecnologiche.

TAVOLI DI FATTI

Nonostante un elevato potenziale regionale in termini di bacini utenze urbane ed industriali potenzialmente servibili, in Liguria al momento queste tecnologie sono sfruttate solo in minima parte.

Gli impianti di teleriscaldamento/ teleraffreddamento concorrono al raggiungimento dell’obiettivo di efficienza energetica del PEAR 2014 – 2020, pari a 332 ltep. Nei prossimi anni la Regione Liguria intende promuovere lo sviluppo di progetti che prevedono l’applicazione di queste tecnologie; ai fini dello sviluppo di distretti urbani caratterizzati da un uso efficiente dell’energia la Regione potrà intervenire attraverso specifici finanziamenti anche in coerenza con le priorità individuate nel programma “Horizon 2020” dedicato alle “Smart Cities and Communities”.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Nonostante in termini di</th>
<th>ANALISI SWOT</th>
<th>Linea</th>
</tr>
</thead>
<tbody>
<tr>
<td>bacini</td>
<td>utenze urbane ed industriali potenzialmente servibili, in Liguria al momento queste tecnologie sono sfruttate solo in minima parte.</td>
<td>L’esercizio commerciale di una rete di teleriscaldamento o teleraffrescamento richiede le seguenti operazioni:</td>
<td>EE.4. Favorire l’installazione di sistemi tecnologici avanzati quali impianti di cogenerazione e trigenerazione, teleriscaldamento e teleraffrescamento</td>
</tr>
</tbody>
</table>
Le reti di teleriscaldamento e teleraffrescamento provocano impatti ambientali soltanto in fase di realizzazione della rete (principalmente rumore e polvere causati dai lavori di scavo). In fase di esercizio l’impatto ambientale di una rete di teleriscaldamento o teleraffrescamento è pressoché nullo.

In termini generali la scelta di utilizzare il teleriscaldamento non produce alcuna contrindicazione sul paesaggio in quanto si tratta di provvedere ad una rete di alimentazione interrata; ovviamente l’incidenza che si evince per il teleriscaldamento è per la centrale di produzione per la quale si rimanda alle considerazioni effettuate per la scelta da impiegarsi sulle tecnologie specifiche (normalmente biomassa, biogas).

Essendo presenti consistenti operazioni di scavo può essere necessaria una indagine archeologica.

POTENZIALI INTERFERENZE

<table>
<thead>
<tr>
<th>LINEA DI SVILUPPO del PEAR</th>
<th>componenti ambientali</th>
<th>fattori antropici</th>
<th>fatt. soc-ec.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aria</td>
<td>suolo</td>
<td>acque</td>
</tr>
</tbody>
</table>

EE.4. Favorire l’installazione di sistemi tecno-logici avanzati quali impianti di cogenerazione e trigenerazione, teleriscaldamento e teleraffrescamento

Le reti di teleriscaldamento e teleraffrescamento provocano impatti ambientali soltanto in fase di realizzazione della rete (principalmente rumore e polvere causati dai lavori di scavo). In fase di esercizio l’impatto ambientale di una rete di teleriscaldamento o teleraffrescamento è pressoché nullo.

Gli impatti sul suolo derivanti da opere di scavo possono essere ritenuti non rilevanti soprattutto per reti localizzate in ambiti urbani e quindi già antropizzati, in cui il suolo è tipicamente già fortemente impermeabilizzato.

In termini generali la scelta di utilizzare il teleriscaldamento non produce alcuna contrindicazione sul paesaggio in quanto si tratta di provvedere ad una rete di alimentazione interrata; ovviamente l’incidenza che si evince per il teleriscaldamento è per la centrale di produzione per la quale si rimanda alle considerazioni effettuate per la scelta da impiegarsi sulle tecnologie specifiche (normalmente biomassa, biogas).

Essendo presenti consistenti operazioni di scavo può essere necessaria una indagine archeologica.

POTENZIALI INTERFERENZE

<table>
<thead>
<tr>
<th>paesaggio</th>
<th>principali ELEMENTI DI ATTENZIONE/MITIGAZIONE per singola componente/fattore interessato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impatto sul contesto paesaggistico, storico-architettonico e archeologico</td>
<td>H.1. Predisporre, da parte di soggetti abilitati, con riferimento alle possibili interferenze con il patrimonio archeologico, il relativo documento di valutazione (dati bibliografici e d’archivio, ricognizioni territoriali, fotointerpretazioni, cartografia storica, geomorfologia dei luoghi) e la carta del potenziale archeologico, da sottoporre alla Soprintendenza.</td>
</tr>
<tr>
<td>acustica</td>
<td></td>
</tr>
<tr>
<td>Impatto acustico su aree/edifici residenziali</td>
<td>H.2. Per impianti di grossa taglia, analizzare in fase progettuale la compatibilità dell’opera con la zonizzazione acustica comunale e la presenza di recettori sensibili potenzialmente impattati; effettuare una valutazione di impatto acustico, verificando in sito i livelli assoluti e differenziali del rumore immesso nell’ambiente circostante. H.3. Analizzare in fase progettuale l’opportunità di attuare misure quali l’insonorizzazione dell’impianto e l’inserimento di supporti antivibranti.</td>
</tr>
</tbody>
</table>

ULTERIORI CRITERI LOCALIZZATIVI E PRESTAZIONALI
La pompa di calore è una macchina termica che, al pari di un comune frigorifero, preleva calore da un ambiente freddo, per trasferirlo ad un altro ambiente più caldo. Al contrario del frigorifero, invece di raffreddare il vano interno smaltendo il calore all’esterno, la pompa di calore preleva il calore dall’esterno per trasferirlo all’ambiente interno, riscaldandolo.

In quanto opposto al verso spontaneo del flusso di calore, questo processo richiede un apporto energetico dall’esterno, generalmente sotto forma di energia elettrica e/o termica consumata dalla macchina per erogare il servizio di riscaldamento.

Nel campo del condizionamento dell’aria, il termine “pompa di calore” è comunemente riferito ad un condizionatore d’aria reversibile, in grado cioè di fornire sia il servizio di riscaldamento in inverno, che di raffrescamento in estate.

Efficienza energetica notevolmente superiore rispetto ai moderni generatori di calore a gas per il riscaldamento degli ambienti e la produzione di acqua calda sanitaria.

Consistente risparmi economici sulla bolletta energetica nonostante i sistemi più diffusi siano alimentati elettricamente.

Tecnologia matura con filiera e mercato consolidato.

Assenza di emissioni inquinanti a livello locale, con conseguenti effetti di miglioramento della qualità dell’aria in ambito urbano.

Assenza di fiamma, per cui non si applicano le prescrizioni antincendio normalmente richieste per le caldaie (non occorre impianto di adduzione e gestione combustibile, né canna fumaria).

Costo più elevato rispetto alla tecnologia alternativa (caldaia a gas) e maggiore complessità tecnologica.

I sistemi più efficienti sono di provenienza estera, soprattutto per le macchine da taglia medio piccola maggiormente diffuse. Solo una parte del calore fornita dalla pompa di calore all’ambiente da riscaldare è considerata rinnovabile per cui il contributo di questa tecnologia al raggiungimento dell’obiettivo di Burden Sharing è limitato. Emissioni di rumore, rischio perdite di gas refrigerante, impatto visivo sulle facciate per la presenza delle unità di scambio esterne di impianti autonomi.

Possibilità di usare le pompe di calore attraverso il DSM (Demand-Side-Management), per flessibilizzare e bilanciare la rete elettrica, e per compensare le fluttuazioni di potenza dovute alle fonti rinnovabili non-programmabili (solare ed eolico). Le pompe di calore, opportunamente gestite da remoto, potrebbero regolare il proprio funzionamento in modo da operare quando la produzione elettrica è eccedente e spengersi nei periodi in cui è carente per effetto della riduzione della produzione da fonte rinnovabile.

Conto termico 2.0.

Ridotta conoscenza tecnologica e quindi diffidenza da parte degli utenti. Scarsa familiarità di installatori e progettisti con questa tecnologia. L’attuale fase di crisi economica scoraggia l’innovazione tecnologica.

<table>
<thead>
<tr>
<th>POTENZIALI INTERFERENZE</th>
<th>componenti ambientali</th>
<th>fattori antropici</th>
<th>fatt. soc-ec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINEA DI SVILUPPO del PEAR</td>
<td>aria</td>
<td>suolo</td>
<td>acqua</td>
</tr>
</tbody>
</table>

- **FER.9** Promuovere l’impiego delle pompe di calore nel settore civile

Una volta terminati i lavori di montaggio, in fase operativa (in esercizio) l’impatto ambientale di una pompa di calore è generato dai seguenti fenomeni:

- rumore, modesto per installazioni domestiche, generato dal compressore e dai vari ventilatori presenti nel sistema, in particolare nell’unità esterna,
- eventuali perdite di gas refrigeranti con effetto climaterico (fluorurati),
- impatto paesaggistico / architettonico delle unità esterne presenti sulle facciate degli edifici di valore architettonico e/o ubicati nei centri storici,
- calore raffreddato in servizio estivo (refrigerazione) che può contribuire al fenomeno dell’isola calore in ambito urbano.

Calore refluo

1. Per impianti di uso domestico considerare l’eventuale disturbo causato dal calore refluo scaricato in servizio estivo; per gli
<table>
<thead>
<tr>
<th>POTENZIALI INTERFERENZE</th>
<th>principali ELEMENTI DI ATTENZIONE/MITIGAZIONE per singola componente/fattore interessato</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>impianti di dimensioni maggiori effettuare una accurata progettazione sistemi di raffreddamento per diminuire al massimo la temperatura del calore refuò ed evitare effetti di “isola di calore”.</td>
</tr>
</tbody>
</table>

paesaggio

Impatto sul contesto paesaggistico, storico-architettonico e archeologico

I.2 Trattandosi per sua natura, di elemento estraneo al contesto paesaggistico, è necessario che per le unità esterne sia sistematicamente evitata la collocazione sulle facciate principali, privilegiando l’utilizzo di spazi sottotetto, cavedi o altre situazioni in cui le stesse risultano non visibili (sotto parapetti, ecc.);

I.3 Nel caso in cui la dimensione e la collocazione non possono essere differite occorre che sia progettato uno spazio per alloggiarle coerente col contesto paesaggistico (problematica particolarmente sentita anche per attività economiche quali stabilimenti balneari, ristoranti e bar);

I.4 Valutare l’utilizzo di tecnologie come la pompa di calore geotermica;

I.5 Prevedere uno schema di impianto adeguato: studiare attentamente il posizionamento anche reciproco dei generatori installati (disposizione in linea, sfalsati, in cluster, ecc.) e simulare e valutare alternative tecnologiche;

I.6 L’installazione di questa tipologia di impianti dovrà pertanto avvenire in coerenza con il sistema di vincoli che insiste sugli ambiti oggetto di tutela.

I.7 Predisporre, nel caso di pompe di calore geotermiche, da parte di soggetti abilitati, con riferimento alle possibili interferenze con il patrimonio archeologico, il relativo documento di valutazione (dati bibliografici e d’archivio, riconoscimenti territoriali, fotointerpretazioni, cartografia storica, geomorfologia dei luoghi) e la carta del potenziale archeologico, da sottoporre alla Soprintendenza.

acustica

Impatto acustico su aree/edifici residenziali

I.8 Privilegiare impianti a basse emissioni acustiche, in particolare per gli impianti non domestici prevedere un locale apposito per gli impianti opportunamente insonorizzato.

ULTERIORI CRITERI LOCALIZZATIVI E PRESTAZIONALI --
TECNOLOGIA

Per “efficienza energetica” si intende la realizzazione di interventi e l’utilizzo di tecnologie volte alla riduzione dei consumi finali di energia. Gli interventi di efficienza energetica possono riguardare sia l’involvero edilizio (isolamento del tetto, cappotti termici, sostituzione dei serramenti, sfruttamento della radiazione solare tramite serre, utilizo di schermature solari, ecc) sia i sistemi di riscaldamento e condizionamento (sostituzione del generatore di calore, installazione di pompe di calore, utilizzo di sistemi di regolazione quali le valvole termostatiche e la contabilizzazione, ecc), nonché l’innovazione tecnologica dei cicli produttivi ed in generale delle imprese, oltre che l’illuminazione pubblica.

Gli interventi sul parco edilizio hanno un ritmo di penetrazione sul territorio piuttosto lento, anche a causa dell’attuale crisi economica, ma sono fondamentali se riportati in uno scenario di lungo periodo, sia per l’incidenza percentuale che il settore civile ha sui consumi di combustibile fossile, sia per l’entità del risparmio conseguibile.

ANALIS SWOT

<table>
<thead>
<tr>
<th>Punti di forza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regione Liguria ha posto grande attenzione al tema dell’efficienza sia sotto il profilo delle norme che degli interventi programmatori con particolare riferimento all’efficienza energetica negli edifici. Le condizioni climatiche del territorio possono consentire di agire con ottime performance per il miglioramento dell’efficienza energetica negli immobili. Il ricco tessuto imprenditoriale, di ogni dimensione, con competenze di prim’ordine nell’innovazione tecnologica, nell’elettronica di potenza, nell’ICT, nella domotica, ed il suo stretto collegamento con il mondo della ricerca, fa della Liguria un polo con forti potenziali di sviluppo delle tecnologie di efficienza energetica.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Punti di debolezza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assenza di produzione locale di materiali per l’edilizia. Va inoltre considerata, quale punto di debolezza, la composizione del patrimonio edilizio ligure con la presenza di grandi centri storici e di piccoli borghi che rendono più complessa la pianificazione di interventi importanti nel settore ed il rispetto dei parametri di legge nel caso di interventi di efficienza sul parco esistente. Per quanto riguarda il settore industriale, la dimensione medio piccola delle aziende ligure e la mancanza di distretti produttivi caratterizzati merceologicamente, e quindi accomunati dalle stesse problematiche energetiche, ostacola interventi su vasta scala volti a razionalizzare energicamente interi settori produttivi.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opportunità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il sistema di incentivazione nazionale per gli interventi in materia di efficienza energetica può rappresentare una buona leva per la diffusione delle relative tecnologie anche in considerazione del costo tendenzialmente in aumento dei combustibili tradizionali. L’evoluzione tecnologica (nuovi materiali, impianti maggiormente efficienti, ecc.) può rappresentare un driver di sviluppo del settore. Tale evoluzione è sicuramente favorita ed accelerata dalla pubblicazione di norme sempre più stringenti a livello europeo su prodotti, impianti e processi di produzione, che indirizza e stimola il mercato, soprattutto in ambito civile. Utilizzo di strumenti finanziari innovativi come il partenariato pubblico privato, anche attraverso il meccanismo delle ESCo, per tutti i settori coinvolti nelle linee di Piano del PEAR EE1 e EE2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minacce</th>
</tr>
</thead>
<tbody>
<tr>
<td>La crisi economica del Paese, che ha fortemente ridotto la capacità di investimento delle famiglie e delle imprese, può rappresentare un freno agli investimenti nel settore.</td>
</tr>
</tbody>
</table>

DATI AMBIENTALI

| Sistema Informativo Regionale Ambientale risulta un Consumo Finale al 2011 pari a 2.547 Mtep ed un Consumo Finale Lordo (CFL) di circa 2.634 Mtep. |

POTENZIALI INTERFERENZE

<table>
<thead>
<tr>
<th>LINEA DI SVILUPPO del PEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEZ/EE 5</td>
</tr>
<tr>
<td>Incrementare l’efficienza energetica nei settori terziario, imprese e cicli produttivi/ Incrementare l’efficienza energetica del patrimonio edilizio pubblico e dell’illuminazione pubblica</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>componenti ambientali</th>
<th>fattori antropici</th>
<th>fatt. soc-ec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>aria</td>
<td>suolo</td>
<td>biodiv.</td>
</tr>
<tr>
<td>acque</td>
<td>paesaggio</td>
<td>acustica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>elettrom.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rifiuti</td>
</tr>
</tbody>
</table>

Dati i molteplici interventi compresi all’interno dell’efficientamento energetico non è possibile considerarne gli effetti: occorre però tenere presente che qualsiasi azione solitamente comporta effetti potenzialmente negativi.

Ad esempio, per fare un caso classico, interventi quali la realizzazione di cappotti termici in edilizia presuppongono un modesto impatto derivante dai cantieri che generano inquinamento, polveri, rumore, traffico di mezzi pesanti e smaltimento dei materiali di risulta.

Vi sono però situazioni che ad un primo esame non comporterebbero elementi di criticità: è il caso della illuminazione a LED (Light Emitting Diode), che utilizza l’energia elettrica con grande efficienza (emettendo luce senza dispersione in calore) e tuttavia presenta anche aspetti critici. Il primo è quello
dato dalla lunghezza d’onda del blu che può causare danni retinici di natura fotochimica (“danno da luce blu”): la normativa IEC 62471 sulla Sicurezza Fotobiologica ha definito i rischi causati dalla radiazione ottica e uno è quello da luce blu (ormai tutti i principali produttori di LED pubblicano nel loro sito il gruppo di rischio dei LED da loro commercializzati). Il secondo è legato all’inquinamento luminoso generato dalla illuminazione pubblica: la luce con forti componenti bianco-blu viene diffusa molto di più dalle molecole dell’atmosfera rispetto alla luce con una componente prevalente verso il giallo; il fenomeno determina un aumento del livello di inquinamento luminoso in prossimità delle sorgenti, fino ad alcune decine di chilometri. In ambedue i casi la soluzione, proposta tra gli altri dall’American Medical Association (AMA), è quella di limitare la temperatura di colore correlata (CCT) a 3000 gradi Kelvin o anche a meno, cioè una luce più gialla (cosiddetta “calda”). Quanto sopra esposto vuole solo essere uno dei molteplici esempi che si potrebbero fornire sula notevole complessità degli aspetti ambientali legati all’efficienza energetica e sull’attenzione che ad essi occorre rivolgere.

<table>
<thead>
<tr>
<th>POTENZIALI INTERFERENZE</th>
<th>principali ELEMENTI DI ATTENZIONE/MITIGAZIONE per singola componente/fattore interessato</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ULTERIORI CRITERI LOCALIZZATIVI E PRESTAZIONALI</td>
<td></td>
</tr>
</tbody>
</table>
a)

ALLEGATO 3 - Piano di Monitoraggio

L’Allegato intende rispondere al Parere Motivato attuando, in particolare, l’adeguamento e la revisione dei 3 set di indicatori (Prestazione, Descrizione ed Efficacia) originariamente presenti nel Piano di Monitoraggio del Rapporto ambientale, in termini di rappresentatività, opportunità, idoneità di scala e popolabilità.

Qui di seguito sono analizzati nel dettaglio gli indicatori di Descrizione ed Efficacia, rimandando al Cap. 6.8 per gli indicatori di Prestazione.

Indicazioni provenienti dall’esperienza del PEAR 2003

Il precedente Piano Energetico del 2003 ha fornito numerosi elementi di analisi e riflessione ed alcune questioni specifiche che devono essere adeguatamente considerate.

Si richiamano in particolare alcune “lezioni” apprese dal precedente documento di pianificazione (PEAR 2003).

L’analisi del grado di raggiungimento del PEAR 2003 (di cui al documento di Piano) ha evidenziato come gli obiettivi specifici per alcune tecnologie siano stati ampiamente superati: è il caso del solare fotovoltaico a cui il PEAR 2003 aveva attribuito scarso potenziale a causa degli elevati costi e della scarsa performance energetica dei pannelli. Tale fonte invece ha subito un’elevata crescita determinata dall’accelerazione tecnologica e dall’istituzione di incentivi nazionali (es. Conto Energia) che hanno reso non solo economicamente sostenibile, ma anche redditizio il ricorso a questa tecnologia.

Analogamente per la fonte eolica, a fronte di uno scarso potenziale dichiarato nel PEAR 2003, questa fonte ha subito infatti una significativa evoluzione, sia grazie agli effetti delle misure incentivanti nazionali, sia grazie ad una più approfondita conoscenza del potenziale della fonte in vari siti, derivante dalle misurazioni effettuate da alcuni operatori di settore. La Regione Liguria con DCR n. 3 del 03/02/2009 ha pertanto ritenuto di portare ad un innalzamento dell’obiettivo sulla fonte eolica da 8 MW a 120 MW.

Viceversa per altre fonti (si veda tabella seguente), per le quali erano stati stabiliti obiettivi ambiziosi, si sono riscontrate difficoltà di attuazione o addirittura, come nel caso della biomassa e del solare termico, non si dispone di una quantificazione certa dell’installato sul territorio regionale.

<table>
<thead>
<tr>
<th>Fonte energetica</th>
<th>Obiettivo PEAR 2003</th>
<th>Fonte del dato</th>
<th>Situazione al 2010-2012</th>
<th>Energia equivalente</th>
<th>Raggiungimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotovoltaico</td>
<td>qualche MWe</td>
<td>Dati rapporto GSE del 2010</td>
<td>15 MWe</td>
<td>1 ktep</td>
<td>raggiunto</td>
</tr>
<tr>
<td>Eolico*</td>
<td>8 MWe</td>
<td>Dati rapporto GSE del 2010</td>
<td>19 MWe</td>
<td>3 ktep</td>
<td>raggiunto</td>
</tr>
<tr>
<td>Mini idro</td>
<td>non indicato</td>
<td>Dati rapporto GSE del 2010</td>
<td>77,2 MW</td>
<td>19 ktep</td>
<td>---</td>
</tr>
<tr>
<td>Rifiuti</td>
<td>250.000 MWh</td>
<td>---</td>
<td>0 MWe</td>
<td>0 ktep</td>
<td>non raggiunto</td>
</tr>
<tr>
<td>Biomasstradica##</td>
<td>non indicato</td>
<td>Dati rapporto GSE del 2010</td>
<td>113.000 MWh</td>
<td>10 ktep</td>
<td>---</td>
</tr>
<tr>
<td>Biomassa#</td>
<td>150 MW</td>
<td>Sistema Informativo Regionale Ambientale - 2011</td>
<td>451 MWh</td>
<td>47 ktep</td>
<td>---</td>
</tr>
<tr>
<td>Solare termico##</td>
<td>40 MWt</td>
<td>Bandi regionali e detrazioni fiscali</td>
<td>11 MWt</td>
<td>1 ktep</td>
<td>non raggiunto</td>
</tr>
<tr>
<td>Pompe di calore</td>
<td>non indicato</td>
<td>Dato COAER 2012</td>
<td>1400 MWt</td>
<td>53 ktep</td>
<td>---</td>
</tr>
</tbody>
</table>

Agiornamento PEAR: nuovo obiettivo di potenza installata di 120 MW

Inoltre, per il Può, l’obiettivo originario di 175 MWt non è stato raggiunto. Tuttavia, per il prossimo periodo di programmazione, si intende affermare un obiettivo di 250 MWt con la crescita che si è riscontrata in precedenza.

L’analisi del grado di raggiungimento delle tecnologie e fonti energetiche ha evidenziato che la biomassa e il solare termico non hanno raggiunto gli obiettivi fissati nel Piano Energetico 2003. Tuttavia, si è riscontrato un considerevole incremento rispetto al precedente periodo di programmazione, con una crescita della potenza installata di circa 100 MWt per la biomassa e di circa 20 MWt per il solare termico.

In conclusione, il piano di monitoraggio risulta adeguato e in linea con la situazione attuale, tendente alla crescita e all’innalzamento degli obiettivi per le fonti e tecnologie energetiche più avanzate e innovatrici.
Nella prospettiva di rendere il nuovo Piano più efficace dal punto di vista dell’attuazione occorre quindi **prevedere un monitoraggio continuo in corso d’opera**, sia in termini di evoluzione dei consumi e della produzione da fonti rinnovabili sul territorio, sia di evoluzione delle tecnologie, oltre che di analisi dell’efficacia delle azioni messe in campo, al fine di tenere conto anche degli effetti di variabili esogene (legate ad esempio all’andamento demografico, alla crisi economica e all’evoluzione delle normative) che possono influenzare l’efficacia delle azioni previste e di consentire una ricalibrazione degli obiettivi per fonte a seguito degli esiti del monitoraggio stesso.

In linea generale si può evidenziare che l’assenza di un monitoraggio continuo del PEAR 2003 e quindi dei relativi aggiornamenti (che sarebbero stati necessari alla luce delle variazioni del profilo tecnologico e del quadro normativo e di incentivazione a livello nazionale) ha talvolta indebolito l’estensione di quanto sperimentato nelle Aree Campione a tutto il territorio regionale.

In tal senso le azioni del PEAR 2014-2020 sono coordinate con gli Obiettivi Tematici della Programmazione dei Fondi Strutturali POR-FESR 2014-2020.

Ne consegue la necessità di operare, anche in relazione al monitoraggio, in termini di binomio pianificazione-programmazione, con una valutazione continua degli effetti della programmazione in termini di conseguimento degli obiettivi di Piano.

Il Piano è pertanto da considerarsi un **documento dinamico**, che nei prossimi anni sarà soggetto ad approfondimento su temi specifici ed aggiornamento, tenuto conto dell’evoluzione continua delle tecnologie e delle risposte del territorio alle politiche energetiche messe in atto a livello regionale; ciò consentirà una rimodulazione in corso d’opera alla luce dei risultati ottenuti e degli esiti del percorso di monitoraggio, secondo uno schema di monitoraggio ciclico.

Strutturazione del sistema e degli indicatori

Al fine di attuare il monitoraggio delle performance energetiche del PEAR 2014-2020 la Regione Liguria farà ricorso principalmente alle Banche Dati regionali esistenti ed in particolare al proprio Sistema Informativo Regionale Ambientale (SIRA), lo strumento di base per il **governo dei dati ambientali ed energetici** che contiene al suo interno i modelli per la realizzazione del bilancio energetico e dell’**inventario delle emissioni** al momento aggiornato al 2011.

Lo sforzo dovrà essere quello di mettere a punto strumenti di indagine e trattamento dei dati in grado di rendere interoperabili le diverse banche dati e di completare il quadro informativo, al fine di popolare con la necessaria frequenza gli indicatori.

A tal fine la Regione Liguria intende:

- **Progettare strumenti informativi funzionali alla raccolta delle informazioni relative alla produzione ed al consumo di energia da fonti rinnovabili sul territorio regionale.** Tali strumenti dovranno essere

- **Analizzare le fonti di informazione funzionali al monitoraggio dello sviluppo delle fonti rinnovabili sul territorio regionale**: ovvero effettuare una ricognizione delle banche dati esistenti a livello territoriale e nazionale e definire le modalità di integrazione delle informazioni contenute nelle suddette banche dati all’interno del sistema informativo di monitoraggio del Burden Sharing di cui al punto precedente. Tale attività comprenderebbe l’indagine, la messa a sistema e l’analisi di coerenza delle informazioni di origine locale, regionale, istituzionale da integrare nel sistema di monitoraggio, al fine di definire un quadro certo dello stato dell’arte delle informazioni disponibili sullo sviluppo delle fonti rinnovabili in Liguria, della loro periodicità e dettaglio territoriale. Tale attività dovrà essere strettamente coordinata con gli sviluppi del processo del monitoraggio del Burden Sharing a livello nazionale, che prevede tra l’altro la messa a punto da parte di GSE di SIMERI, il “Sistema italiano per il monitoraggio statistico delle energie rinnovabili”, che permetterà alle Regioni di seguire l’evoluzione dei consumi soddisfatti con le fonti rinnovabili attraverso “cruscotti” interattivi.

Occorre evidenziare la complessità, per la mole e le differenti fonti di informazione richieste, del presente piano di monitoraggio, che richiede una significativa azione di “governance” ed un approccio “partecipato” da parte dei portatori di interesse, che quindi saranno coinvolti non solo nell’attuazione del Piano, ma anche nella fase di monitoraggio, attivando così un processo di “monitoraggio partecipato”.

Tra gli strumenti con funzioni di “governance” e di “partecipazione” per il monitoraggio del PEAR si evidenzia il Comitato di Pilotaggio del Patto dei Sindaci, attivato dai Dipartimenti Ambiente, Sviluppo Economico e Formazione (descritto al Cap. 6), di cui fanno parte:

- Regione Liguria
- 4 Province
- 4 Comuni capoluogo
- 4 Comuni non capoluogo (in rappresentanza di 4 Tavoli Territoriali provinciali)

Il Comitato di Pilotaggio costituisce uno strumento fondamentale non solo per l’attuazione, attraverso il Patto dei Sindaci, del PEAR, ma anche per il monitoraggio del Piano stesso.

Un ulteriore strumento potenzialmente utile al monitoraggio partecipato del PEAR è rappresentato dall’indagine conoscitiva condotta sul territorio regionale nell’agosto 2014, anticipando la consultazione pubblica della procedura di VAS: l’indagine si poneva l’obiettivo di individuare quali, tra gli orientamenti programmatici espressi nella politica energetica regionale, coinvolgessero in maggior misura i cittadini, sia nel senso di essere maggiormente compresi sia nel senso di essere maggiormente condivisi.

Essa consisteva in un questionario rivolto alla cittadinanza finalizzato alla rilevazione del grado di consapevolezza e di condivisione rispetto agli orientamenti programmatici della politica energetica regionale, al potenziamento dell’efficienza energetica e alla valorizzazione di processi decisionali.

#
La metodologia utilizzata (Q(methodology) è tipica della democrazia partecipativa e pertanto adatta a supportare il processo di monitoraggio partecipato previsto dal presente Piano, in quanto ben si presta a monitorare in modo sistematico il livello di comprensione e condivisione delle politiche di sviluppo del PEAR via via che vengono attuate.

Le modalità di attuazione possono essere declinate in funzione di una molteplicità di obiettivi: per valutare in progress il grado di apprendimento e contestualmente diffondere le informazioni, un panel di intervistati rive da periodicamente i risultati acquisiti nelle tontate precedenti. Gli intervistati hanno così modo di vedere a quale orientamento appartengono e, dopo una fase di discussione, possono cambiare opinione. Con l’obiettivo invece di affinare la selezione delle politiche via via in corso di attuazione l’indagine può essere successivamente implementata discutendo i risultati già ottenuti nelle fasi precedenti in focus group cui partecipino i diversi portatori di interesse.

Si riporta di seguito un estratto del “IL MODELLO DI RIFERIMENTO PER L’ELABORAZIONE DEL RAPPORTO AMBIENTALE AI SENSI DELLA LR 32/2012” della Regione Liguria:

“Gli indicatori devono essere sempre riferiti a un obiettivo e azione significativa di piano, allo scopo di individuarne un numero ridotto, efficace a rappresentare l’andamento del contesto ambientale e a leggere sia direttamente che indirettamente, gli effetti del piano sull’ambiente (efficacia). In corrispondenza degli indicatori devono essere individuati i target (qualitativi o quantitativi). Devono essere definiti chiaramente anche ruoli, risorse, e modalità di revisione del piano in conseguenza di scostamenti dai target.

Un ulteriore elemento da tenere in considerazione nel sistema di monitoraggio è la valutazione dell’efficienza del piano nell’attuare le proprie previsioni. Può essere utile ai fini dell’attuazione del monitoraggio e della revisione del piano istituire un gruppo di lavoro/conferenza dei servizi che verifichi periodicamente lo scostamento dai target stabiliti, ed aprirsi conseguentemente i correttivi necessari.

L’introduzione di una variante è comunque subordinata allo svolgimento e agli esiti del monitoraggio, per cui è opportuno stabilire meccanismi normativi che la riconducano nell’ambito dell’esame periodico di efficacia ed efficienza del piano.”

Sulla base di quanto detto sopra sono stati individuati tre categorie principali di indicatori:

- 33 indicatori di PRESTAZIONE, legati strettamente alle azioni del PEAR e trattati come parte integrante del PEAR a cui si rimanda (Cap. 6.8)
- 12 indicatori di DESCRIZIONE, che descrivono il contesto ambientale in cui agisce il Piano, suddivisi secondo le tematiche che sono state considerate nel Quadro Conoscutivo del presente RA, in:
 - componenti ambientali,
 - fattori antropici,
 - fattori socio-economici,
 secondo lo schema seguente:

<table>
<thead>
<tr>
<th>Componente/ fattore</th>
<th>Macro tematica</th>
<th>Tematica</th>
<th>Indicatore di descrizione (unità di misura)</th>
<th>PSR</th>
<th>Fonte</th>
<th>Frequenza rilevamento</th>
<th>Rilevanza dello specifico Indicator per il PEAR</th>
</tr>
</thead>
</table>

In questo caso sono state prese in considerazione solo le tematiche ambientali che possono essere interferite (anche in modo indiretto e con impatti limitati e/o poco probabili) dalle azioni di Piano. Le tematiche ambientali sono descritte da indicatori non necessariamente afferenti ai potenziali effetti del Piano, ma descrivono in termini complessivi la situazione del contesto ambientale in cui il Piano opera. Si fa
riferimento in questo caso al modello PSR-OCSE (Pressioni-Stato-Risposte), ritenendo che tale modello risulti di più semplice comprensione e comunicabilità rispetto al quello DPSIR65.

In fase di adeguamento del PEAR il numero di indicatori di descrizione è stato ridotto da 21 a 12, razionalizzando gli indicatori specifici per il comparto aria ed emissioni in atmosfera ed apportando inoltre alcune modifiche agli indicatori specifici per la macro tematica rifiuti.

- 10 indicatori di **EFFICACIA**, che rappresentano la “performance ambientale” del Piano, secondo il seguente schema:

<table>
<thead>
<tr>
<th>Componente Fattore</th>
<th>Macro tematica</th>
<th>Tematica</th>
<th>Indicatori di efficacia (unità di misura)</th>
<th>PSR</th>
<th>Fonte</th>
<th>Frequenza rilevamento</th>
<th>Rilevanza dello specifico indicatore per il PEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>aria e fattori climatici</td>
<td>aria</td>
<td>ID1: Dati di concentrazione registrati dalle stazioni della rete regionale di qualità dell’aria e superamenti dei valori limite [µg/m³]; [numero]</td>
<td>S</td>
<td>Regione Liguria - RSA</td>
<td>annuale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fattori climatici</td>
<td>ID2: Emissioni annue gas serra per macosettore [CO₂]</td>
<td>P</td>
<td>Regione Liguria - RSA</td>
<td>annuale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acque superficiali e sotterranee</td>
<td>acque superficiali</td>
<td>ID3: Stato chimico [%]</td>
<td>S</td>
<td>Regione Liguria - RSA</td>
<td>annuale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gli indicatori di efficacia sono stati revisionati con particolare riguardo al comparto idroelettrico.

In effetti ai fini della classificazione dell’Agenzia Europea dell’Ambiente tali indicatori dovrebbero essere legati anche alle risorse economiche messe in campo dalla implementazione del Piano, ma ciò non è possibile per una serie di motivi, quali tra gli altri l’impossibilità di conoscere a priori i finanziamenti del POR-FESR che saranno destinati ad azioni coerenti e sinergiche con quelle del PEAR e la difficoltà tecnica di calcolo di tali indicatori, vista la scarsa popolabilità di dati a tale fine e, non ultima, la mancanza di una sistema di contabilità ambientale.

Vengono quindi individuati alcuni “indicatori cardine”, per le tematiche sulle quali effettivamente il Piano impatta, che misurano la performance di Piano in termini di pura efficienza ambientale. Ove questo non è possibile, invece di indicatori quantitativi si è ricorso ad “indicatori percettivi” che, sebbene senza il valore assoluto dei primi, contribuiscono ad ottenere una visione più completa dell’efficienza ambientale del Piano.

Fra gli indicatori verranno poi tenuti in considerazione anche gli indicatori che verranno via via individuati nelle modalità attuative dei singoli interventi di realizzazione delle opere derivate dal PEAR (impianti di produzione di energie rinnovabili...) oltre alle indicazioni contenute nelle schede redatte per singola tecnologia (solare, fotovoltaico, idroelettrico...)

Mentre la frequenza dei rilevamenti dei dati è annuale o biennale, sulla base della reperibilità dei dati, la frequenza dell’editing del report di monitoraggio è biennale.

Si ricorda che il sistema di monitoraggio è da intendersi non come uno strumento statico, ma dinamico, sottoposto anch’esso come l’intero PEAR ad azioni di feed-back per azioni di ri-calibrazione in corso d’opera.

INDICATORI DI DESCRIZIONE

Indicatori che descrivono il contesto ambientale complessivo in cui agisce il piano

<table>
<thead>
<tr>
<th>Componente Fattore</th>
<th>Macro tematica</th>
<th>Tematica</th>
<th>Indicatori di descrizione (unità di misura)</th>
<th>PSR</th>
<th>Fonte</th>
<th>Frequenza rilev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>complessi ambientali</td>
<td>aria</td>
<td>ID1: Dati di concentrazione registrati dalle stazioni della rete regionale di qualità dell’aria e superamenti dei valori limite [µg/m³]; [numero]</td>
<td>S</td>
<td>Regione Liguria - RSA</td>
<td>annuale</td>
<td></td>
</tr>
<tr>
<td>fattori climatici</td>
<td>ID2: Emissioni annue gas serra per macosettore [CO₂]</td>
<td>P</td>
<td>Regione Liguria - RSA</td>
<td>annuale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acque superficiali e sotterranee</td>
<td>acque superficiali</td>
<td>ID3: Stato chimico [%]</td>
<td>S</td>
<td>Regione Liguria - RSA</td>
<td>annuale</td>
<td></td>
</tr>
</tbody>
</table>

65 Il SIRAL adotta il modello DPSIR, ma gli indicatori utilizzati nel sistema di monitoraggio del PEAR non utilizza indicatori “D” e “I” in quanto quelli a disposizione non risultano essere significativi per il PEAR. Inoltre a livello comunicativo il modello PSR risulta di semplice comprensione anche per un pubblico non tecnico.
INDICATORI DI EFFICACIA

Indicatore che segnalano l’influenza diretta delle azioni di piano sul contesto ambientale

<table>
<thead>
<tr>
<th>Componente / Fattore</th>
<th>Macro tematica</th>
<th>Tematica</th>
<th>Indicatori di efficacia (unità di misura)</th>
<th>PSR</th>
<th>Fonte</th>
<th>Frequenza rilevamento</th>
<th>Tecnologia impattata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aria e fattori climatici</td>
<td>Aria</td>
<td>IE1: Trend emissioni in atmosfera dei principali inquinanti</td>
<td>R</td>
<td>SIRAL – RSA</td>
<td>quinquennale</td>
<td>Biogas Biomasse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emissioni di gas serra</td>
<td>IE2: Emissioni ad effetto serra evitate dalle azioni di PEAR (% di CO₂, non emessa su totale emessa/anno)</td>
<td>R</td>
<td>Dipartimento Sviluppo Economico, Settore Ricerca, Innovazione ed Energia</td>
<td>biennale</td>
<td>Biogas Biomasse</td>
<td></td>
</tr>
<tr>
<td>Suolo ed assetto idrogeologico</td>
<td>Suolo</td>
<td>IE3: Rapporto tra fotovoltaico installato su edifici e installato a terra (%)</td>
<td>R</td>
<td>Dipartimento Sviluppo Economico, Settore Ricerca, Innovazione ed Energia</td>
<td>biennale</td>
<td>Fotovoltaico</td>
<td></td>
</tr>
<tr>
<td>Componenti Ambientali</td>
<td>Acque superficiali e sotterranee</td>
<td>Acque superficiali</td>
<td>IE4: Andamento dello stato ecologico [%]</td>
<td>R</td>
<td>SIRAL – RSA</td>
<td>annuale</td>
<td>Idroelettrico</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IE5: Numero di punti di presa per uso idroelettrico (numero)</td>
<td>R</td>
<td>SIRAL – RSA</td>
<td>annuale</td>
<td>Idroelettrico</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IE6: Quantità derivata per uso idroelettrico (l/s)</td>
<td>R</td>
<td>SIRAL – RSA</td>
<td>annuale</td>
<td>Idroelettrico</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IE7: Potenza per uso idroelettrico (kW)</td>
<td>R</td>
<td>SIRAL – RSA</td>
<td>annuale</td>
<td>Idroelettrico</td>
</tr>
</tbody>
</table>

Legenda:
- **S** stato
- **R** risposta

Fonte: http://www.liguriavincioli.it/dati.asp

Nota: I dati presenti sul SIRAL sono aggiornati al 2011. Sono in corso alcuni Progetti Europei che forniranno al loro termine (2020) un dato aggiornato.

Fonte: www.ambienteinliguria.it nella pagina Derivazioni idriche

Fonte: I dati contenuti nel SIRAL sono solo parzialmente aggiornati
Gestione del sistema, comunicazione, monitoraggio partecipato

A completare il quadro della metodologia di monitoraggio del PEAR vengono ora delineate le strategie di comunicazione periodica dei risultati del monitoraggio stesso.

I processi di VAS devono comprendere indicazioni operative in merito a come attivare e gestire il monitoraggio: definire responsabilità, tempistiche, modalità e costi, al fine di garantire che tale attività venga condotta lungo tutto il ciclo di vita del programma e oltre.

A tale scopo la normativa in materia di VAS (D Lgs n. 152/06 e ss.mm. ed ii., con particolare riferimento al D Lgs n. 128/2010) richiede di individuare tempi e costi del monitoraggio e definisce un quadro di responsabilità da declinarsi a seconda della tipologia di piano o programma e del contesto in cui si opera.

In tutti i casi devono essere ben definiti ruoli e compiti (oltre che previste e messe a disposizione risorse umane e finanziarie adeguate) e deve essere chiarita la modalità di eventuale coinvolgimento delle autorità con competenze ambientali, anche al fine della raccolta di informazioni.

Il riferimento normativo regionale è l’art. 14 (Monitoraggio) della Legge Regionale 32/2012 “Disposizioni in materia di valutazione ambientale strategica (VAS) e modifiche alla legge regionale 30 dicembre 1998, n. 38, che prevede che il proponente effetti tale monitoraggio con oneri a proprio carico, che in questo caso, per quanto necessario e non ottenibile mediante sistemi di monitoraggio già in essere, potranno essere reperite nell’ambito del programma stesso, alla voce assistenza tecnica o, per quanto riguarda eventuali risorse umane aggiuntive e ove possibile, anche nell’ambito dei percorsi di rafforzamento amministrativo.

Per gestire il sistema di monitoraggio del PEAR si ritiene di creare un **Gruppo di Lavoro Interdisciplinare** e di operare in sinergia del proposto Comitato di Pilotaggio per il monitoraggio del POR-FESR 2014-2020 (comprendente referenti del Dipartimento Sviluppo Economico quale Autorità di Gestione e, per il Dipartimento Ambiente, dell’Autorità Ambientale regionale).

Il Gruppo di Lavoro dovrà:

- definire e verificare modalità e responsabilità per il popolamento degli indicatori di descrizione;
- definire e verificare tempi e modi per il popolamento degli indicatori di efficacia, correlandosi con i soggetti interessati e individuando le condizioni per l’attivazione di un flusso informativo adeguato alle attività di reporting del monitoraggio;
- elaborare proposte per eventuali necessità di rimodulazione o affinamento del piano di monitoraggio;
- analizzare eventuali effetti imprevisti del PEAR e proporre azioni correttive e meccanismi di retroazione ove opportuni.
effettuare proposte sui contenuti e le modalità di editing e diffusione del Rapporto di Monitoraggio.

Il monitoraggio di cui ai punti precedenti trova attuazione nella misurazione e valutazione periodica, da parte del Gruppo di Lavoro istituito per la gestione del sistema di monitoraggio, degli indicatori appositamente selezionati che comprendono, come detto, gli indicatori di descrizione ed efficacia che integrano gli indicatori prestazionali individuati per il monitoraggio fisico del PEAR. Per ogni linea d’azione sono individuati gli indicatori pertinenti, utili a monitorare gli obiettivi di sostenibilità correlati, ossia per i quali saranno individuati effetti sinergici o antisinergici rispetto alle previsioni del PEAR.

Sarà cura del Gruppo di Lavoro sintetizzare poi gli esiti dei singoli monitoraggi in un quadro complessivo e trarne le opportune valutazioni, finalizzate innanzitutto all’analisi dell’efficacia complessiva del PEAR e in seconda battuta all’eventuale necessità di revisione del Piano di Monitoraggio, nel caso occorresse prevedere misure di retroazione o azioni correttive al monitoraggio.

Diffusione dati di monitoraggio

A partire dai primi atti di implementazione operativa del PEAR, il Gruppo di Lavoro Interdisciplinare si riunirà periodicamente, con cadenza minima semestrale e produrrà Report di Monitoraggio periodici, con cadenza temporale minima biennale che saranno pubblicati nei siti web dell’autorità competente, dell’autorità procedente, nonché dell’ARPAL.

Il Gruppo di Lavoro Interdisciplinare potrà inoltre individuare altri soggetti con competenze in materia ambientale, anche esterni a Regione, da coinvolgere nelle attività di monitoraggio nelle fasi attuative del PEAR, in base al loro possibile contributo nel popolamento degli indicatori previsti e integrativi, e potrà ove opportuno attivare monitoraggi specifici in base a necessità contingenti e disponibilità di risorse.

Il Report di Monitoraggio, non dovrà limitarsi ad una semplice esposizione di tabelle e grafici: quindi oltre agli aspetti quantitativi derivanti dagli indicatori, che comunque dovranno essere opportunamente commentati, il report dovrà evidenziare tutti i più rilevanti elementi che possono portare a miglioramenti del PEAR, quali ad esempio modifiche di condizioni al contorno, nuove tecnologie, costrizioni derivanti da nuovi adempimenti normativi, ecc.

Si consideri inoltre a tale proposito, che l’azione di monitoraggio, considerata elemento fondamentale per la corretta implementazione del PEAR, sarà supportata da approfondimenti tecnici, volti ad analizzare ciascuna Linea di Sviluppo del Piano.

Il Rapporto di Monitoraggio sarà inviato al Settore VAS del Dipartimento Ambiente della Regione Liguria che, con l’ausilio del Comitato Tecnico VAS, potrà proporre eventuali integrazioni/modifiche al sistema di monitoraggio e possibili azioni di feed-back atte a migliorare l’azione del PEAR.

Il Rapporto di Monitoraggio dovrà essere sviluppato in forma ampiamente comunicativa e non solo indirizzato ai tecnici di settore, in modo che anche un pubblico ampio possa comprenderne i contenuti, eventualmente con una “sintesi non tecnica” redatta a tale scopo utilizzando anche aggregazioni degli indicatori in “indici sintetici” a fini comunicativi (sull’esempio del “dashboard of sustainability” o altro strumento simile).

Sempre relativamente alla comunicazione, il Rapporto di Monitoraggio verrà pubblicato sul sito regionale www.ambienteinliguria.it contenente i dati del SIRAL e presentato in forma pubblica con opportuni strumenti che il Gruppo di Lavoro Interdisciplinare riterrà opportuni (conferenza stampa, seminario informativo, ecc.).

71 http://www.iisd.org/cgsdi/dashboard.asp
Infine, nell’ottica di un monitoraggio partecipato, il Gruppo di Lavoro Interdisciplinare potrà prendere in considerazione l’organizzazione periodica di “forum” partecipativi sul PEAR, con la presenza degli stakeholder e aperto al pubblico, in cui discutere i risultati esposti dal Report di Monitoraggio e raccogliere idee e suggerimenti per una migliore implementazione del PEAR e per la definizione di nuovi o diversi target ed eventuali azioni di feed-back.

Si ricorda a questo proposito quanto già sottolineato nel precedente capitolo: il PEAR è da intendersi come uno strumento dinamico, sottoposto ad azioni di feed-back per azioni di ri-calibrazione in corso d’opera.
Legenda
ACS Acqua Calda Sanitaria
AEA Agenzia Europea per l’Ambiente
AEEGSI Autorità per l’Energia Elettrica, il Gas e il Sistema Idrico
APE Attestato di Prestazione Energetica
ARPAL Agenzia Regionale per la Protezione dell’Ambiente Ligure
BAU Business As Usual (scenario)
CAITEL Catasto Impianti termici
CAR Cogenerazione Alto Rendimento
CCS Carbon Capture and Storage
CE Comunità Europea
CFL Consumi Finali Lordi
DCR Delibera Consiglio Regionale
DGR Delibera Giunta Regionale
Di Decreto Interministeriale
Dlgs Decreto Legislativo
DM Decreto Ministeriale
DMV Deflusso Minimo Vitale
DPCM Decreto Presidenza Consiglio dei Ministri
DPR Decreto Presidente della Repubblica
ENEA Agenzia Nazionale per le Nuove Tecnologie, L’energia e lo Sviluppo Economico Sostenibile
ESCo Energy Service Company
ETS Emission Trading System
FER Fonti di Energia Rinnovabile
GSE Gestore Servizi Energetici
GWP Global Warming Potential
ISTAT Istituto Nazionale di Statistica
LR Legge Regionale
ME Manufatti Emergenti
MPCI Micro, Piccole e Medie Imprese
NZEB Edifici Energia quasi zero
PAN Piano d’Azione Nazionale
PdS Patto dei Sindaci
PEAR Piano Energetico Regionale Ambientale
PM Parere Motivato
PMI Piccole e Medie Imprese
PNA Piano Nazionale di Allocazione
PNACC Piano Nazionale di Adattamento ai Cambiamenti Climatici
PTA Piano di Tutela Acque
PTCP Piano Territoriale di Coordinamento Paesistico
RR Regolamento Regionale
RSA Relazione sullo Stato dell’Ambiente
SEAP Piano d’Azione per l’Energia Sostenibile
SEN Strategia Energetica Nazionale
SIAPEL Sistema Informativo Attestati di Prestazione Energetica Liguria
SIMERI Sistema Italiano per il Monitoraggio delle Energie Rinnovabili
SIRAL Sistema Informativo Regionale Ambientale Liguria
SNACC Strategia Nazionale di Adattamento ai Cambiamenti Climatici
TEE Titoli di efficienza Energetica
UE Unione Europea
UNESCO Organizzazione delle Nazioni Unite per l’Educazione, la Scienza e la Cultura
VAS Valutazione Ambientale Strategica
VIA Valutazione Impatto Ambientale
PEAR 2014-2020
Piano Energetico Ambientale Regionale

- VALUTAZIONE AMBIENTALE STRATEGICA -
Dichiarazione di Sintesi
DICHIARAZIONE DI SINTESI
DEL PROCESSO DI VAS
DEL PEAR 2014-2010

Redatto in collaborazione con
INTRODUZIONE RIASSUNTIVA...247
1.ASPETTI PROCEDURALI E ITER SEGUITO ..253
2.IMPOSTAZIONE DEL PEAR, CONSULTAZIONI E FASE PUBBLICA ...257
 2.2.Elementi di base per la Definizione degli Obiettivi dello Schema di Piano258
 2.3.Definizione degli obiettivi all’interno dello Schema di Piano263
 2.4.Percorso partecipativo e sua influenza sulla definizione del PEAR265
 2.4.1.Approccio utilizzato265
 2.4.2.Elements del processo partecipativo integrato PEAR/VAS266
 2.4.3.Iniziative partecipative preliminari, metodologie AHP e CE, Patto dei Sindaci267
 2.4.4.Consultazioni con i portatori di interesse268
 2.4.5.Fase di Scoping269
 2.4.6.Comunicazione/partecipazione di pubblico e stakeholder270
 2.4.7.Analisi percettiva di supporto al processo (Q Methodology)270
 2.5.Definizione delle Linee di Sviluppo dello Schema del PEAR (Fase di Scoping)273
 2.6.Indicazioni pervenute e modifiche susseguenti la fase di Scoping276
3. ALTERNATIVE E INTEGRAZIONI DELLE CONSIDERAZIONI AMBIENTALI...278
 3.1.Alternative in relazione alle possibili scelte tecnologiche – Proposta di PEAR 2014-2020278
 3.2. Integrazione delle considerazioni ambientali283
4 ADEGUAMENTO AGLI ESITI DELLA VALUTAZIONE AMBIENTALE...288
 4.1.Contenuti generali del Parere Motivato e sua ottemperanza288
 4.2.Prescrizioni relative alla sezione “Partecipazione”290
 4.3.Prescrizioni relative alla sezione “Sintesi dei contenuti del Piano”290
 4.3.1.Considerazioni generali290
 4.3.2.Efficienza energetica302
 4.3.3.Emissioni climaticamente mutate302
 4.3.4.Fonti rinnovabili302
 4.4. Prescrizioni relative alla sezione “Sintesi dei contenuti del R.A.”305
 4.4.1.Analisi delle alternative305
 4.4.2.Stima degli impatti delle Azioni di Piano306
 4.4.3.Studio di Incidenza313
 4.4.4.Monitoraggio313
 4.5. Prescrizioni relative alla sezione “Osservazioni”313
Il presente documento intende descrivere l’intero iter del Piano Energetico Ambientale Regionale 2014-2020, dallo Schema di Piano approvato nel 2013, alla Proposta di Piano sottoposta (con il relativo Rapporto Ambientale e sintesi non tecnica) all’inchiesta ed alla consultazione pubblica nell’ambito del percorso di Valutazione Ambientale Strategica (VAS) e approvata nel 2014, fino a giungere al PEAR adeguato secondo le prescrizioni del Parere Motivato (PM) n. 47/2015 che ha concretizzato la fase di Istruttoria dell’Autorità Competente per la VAS e da cui risulta la sostenibilità del Piano condizionata all’ottemperanza di alcune prescrizioni. L’articolazione del documento è pertanto da leggere in tale ottica.

Si evidenzia inoltre che ciascuna prescrizione del Parere Motivato trova riscontro specifico dal paragrafo 4.2 al 4.5 e che la versione definitiva delle azioni di Piano in seguito all’adeguamento condotto è riportata allo schema di pag.53.

In base alla L.R. 10 agosto 2012 n. 32 il Piano Energetico Ambientale Regionale 2014-2010 è sottoposto a procedura di Valutazione Ambientale Strategica. In particolare la suddetta Legge Regionale stabilisce:

- la competenza della Regione, quale autorità preposta alla VAS ed alla verifica di assoggettabilità di piani e programmi di cui all’articolo 3, in relazione ai quali le discipline di settore prevedono l’approvazione o l’espressione di assensi, intese, pareri obbligatori da parte della Regione stessa;
- la procedura di VAS di piani e programmi, che si conclude con l’espressione, da parte dell’Autorità Competente, di pronunciamento motivato, avente efficacia vincolante, comprensivo della valutazione sull’adeguatezza del piano di monitoraggio.

Con DGR n. 1174 del 25/9/2013 è stato approvato lo Schema di PEAR ed il relativo Rapporto Ambientale Preliminare, avviando la fase di Scoping della VAS. Successivamente con DGR n. 1517 del 5/12/2014 sono stati approvati la Proposta di PEAR, il Rapporto Ambientale, la Sintesi Non Tecnica e lo Studio di Incidenza, pubblicati sul Bollettino Ufficiale della Regione in data 31/12/2014.

In fase di istruttoria dell’Autorità Competente per la VAS sono stati consultati i soggetti competenti in materia ambientale e le strutture regionali in relazione alle tematiche trattate. L’istruttoria si è concretizzata nel Parere Motivato n. 47/2015, reso a voti unanimi dalla Sezione per la VAS del CTR per il Territorio, nella seduta del 29 aprile 2015, da cui risulta la sostenibilità ambientale del Piano condizionata all’ottemperanza di alcune prescrizioni, volte ad allineare i contenuti con la programmazione economica regionale sui fondi europei (nel corso dell’iter di VAS).
variati e giunti ad approvazione definitiva) e a definirne modalità attuative maggiormente efficaci e ambientalmente sostenibili.

In relazione ai possibili impatti negativi sui Siti della Rete Natura 2000 il PM conteneva anche la “valutazione di incidenza positiva con prescrizioni” del PEAR da parte del settore regionale competente ad esclusione della proposta di nuova Cartografia delle aree non idonee alla collocazione di impianti eolici, con conseguente mantenimento in vigore della Carta nella versione allegata alla DCR. n. 3/2009.

A seguito di quanto sopra esposto il Servizio Energia del Dipartimento Sviluppo Economico ha provveduto alla redazione conclusiva del Piano, secondo quanto previsto dall’art. 10 c. 4 della L.R. n. 32/2012 e ss.mm.ii., recependo le prescrizioni indicate dal PM

Dall’analisi dello stesso, emerge come la maggior parte delle prescrizioni faccia riferimento ad aspetti della pianificazione energetica che sono vincolati dal quadro normativo nazionale ed europeo; ciò determina difficoltà nella definizione delle modalità di raggiungimento degli obiettivi previsti.

Le politiche energetiche e le opzioni strategiche contenute nel PEAR nascono infatti in coerenza con le iniziative europee del Pacchetto Clima Energia e con lo scenario nazionale di recepimento delle Direttive e di declinazione degli obiettivi assegnati agli Stati Membri a livello nazionale dal Decreto del Ministero dello Sviluppo Economico 15 Marzo 2012 (c.d. Decreto Burden Sharing) che ripartisce l’obiettivo nazionale di sviluppo delle fonti rinnovabili (17%) tra le varie Regioni italiane, assegnando alla Liguria l’obiettivo finale del 14,1% e obiettivi intermedi biennali, come segue:

<table>
<thead>
<tr>
<th>Obiettivo Regione Liguria per l’anno [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>anno iniziale di riferimento</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>3,4</td>
</tr>
</tbody>
</table>

L’obiettivo è dato dal rapporto tra i consumi finali da fonti rinnovabili ed i consumi finali lordi:

\[
\frac{\text{Consumo Finale da Fonti rinnovabili}}{\text{Consumo Finale Lordo}} = 14,1\%
\]

Per poter conseguire gli obiettivi del Decreto occorre quindi agire simultaneamente su numeratore e denominatore, incrementando l’utilizzo delle fonti rinnovabili e riducendo i consumi finali lordi attraverso interventi di efficienza energetica. Ciò implica il ricorso ad un mix di opzioni tecnologiche, che presentano punti di forza e di debolezza, ed il cui impiego è da calibrare in relazione al potenziale energetico ed alle ricadute sull’ambiente, con le conseguenti criticità nella redazione e nella valutazione del PEAR.

In generale l’ottemperanza alle prescrizioni contenute nel PM n. 47/2015 ha richiesto adeguamenti del PEAR relativi a quattro principali categorie:

A.allineamento delle azioni di Piano con gli strumenti di programmazione ed in particolare con il programma operativo "POR Liguria FESR", approvato dalla Commissione Europea con Decisione di Esecuzione del 12/02/2015 (successiva all’approvazione dello Schema di PEAR 2014-2020);

B.integrazioni relative agli aspetti di pianificazione energetica ed al perfezionamento del quadro conoscitivo in materia di energia;

C.approfondimenti su norme e piani ambientali e relativo meccanismo di feedback sul PEAR 2014-2020 (integrazione nel Piano delle indicazioni derivanti dal Rapporto Ambientale);

D.revisione della Cartografia delle Aree Non Idonee alla collocazione di impianti eolici.

76 Direttive Europee “Habitat” ed “Uccelli”.
77 Recante “Definizione e qualificazione degli obiettivi regionali in materia di fonti rinnovabili e definizione delle modalità di gestione dei casi di mancato raggiungimento degli obiettivi da parte delle regioni e delle province autonome”
78 Il DM 15 marzo 2012 definisce il consumo finale lordo di energia di una Regione o Provincia autonoma come somma dei seguenti tre termini: a) consumi elettrici, compresi i consumi degli ausiliari di centrale, le perdite di rete e i consumi elettrici per trasporto; b) consumi di energia per riscaldamento e raffreddamento in tutti i settori, con esclusione del contributo dell’energia elettrica per usi termici; c) consumi per tutte le forme di trasporto, ad eccezione del trasporto elettrico e della navigazione internazionale.
Il Servizio Energia del Dipartimento Sviluppo Economico della Regione Liguria, in collaborazione con I.R.E. Spa, con riferimento alle suddette categorie di prescrizioni, ha provveduto a redigere un documento recante “Indirizzi per l’adeguamento del PEAR 2014-2020 alle prescrizioni del Parere Motivato n. 47/2015”, approvato con DGR n. 451 del 7/06/2017 che ha costituito il riferimento principale per l’adeguamento del PEAR. Esso contiene, a titolo non esaustivo:

1. l’analisi degli strumenti di programmazione regionali per il periodo 2014-20 (POR-FESR, PSR, POR-FSE) ed individuazione delle misure correlate alle azioni del PEAR;
2. integrazioni dei dati energetici relativi alla produzione di energia da fonti rinnovabili in Liguria per gli anni 2003-2011;
3. individuazione delle norme e dei piani ambientali di riferimento in relazione alle singole opzioni tecnologiche del PEAR;
4. proposta di costituzione di un Tavolo Tecnico con la funzione di “individuare criteri condivisi per la revisione della Cartografia delle Aree Non Idonee alla collocazione di impianti eolici di cui alla DCR. n. 3/2009” e di un analogo Tavolo Tecnico per la definizione dei criteri utili alla mappatura dei tratti fluviali non idonei alla collocazione di impianti idroelettrici.

Sinteticamente gli indirizzi per l’ottemperanza alle prescrizioni, riportati al documento di cui sopra, sono elencati nella tabella seguente:

<table>
<thead>
<tr>
<th>SINTESI DELLE PRESCRIZIONI</th>
<th>SINTESI DEGLI INDIRIZZI DI RECEPIMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2. MOMENTO ZERO: definire in modo univoco un momento 0 della pianificazione, rispetto al quale allineare i dati conoscitivi</td>
<td>I2. La Proposta di PEAR riportava il bilancio energetico più aggiornato disponibile presso il Sistema Informativo Ambientale Regionale (SIRA), riferito all’anno 2011. Esso costituisce il momento 0 della pianificazione, rispetto al quale in fase di adeguamento del PEAR vengono allineati i dati conoscitivi relativi alle fonti rinnovabili di energia e rispetto al quale vengono analizzati gli esiti del PEAR 2003. In particolare l’allineamento dei dati dei consumi di energia da fonti rinnovabili viene effettuato al 2011 sulla base dei disponibili presso il SIRA, integrati tenendo conto di statistiche a livello nazionale.</td>
</tr>
<tr>
<td>P4. ALLINEAMENTO CON PROGRAMMAZIONE FONDI: poiché le azioni rimandano alle misure di finanziamento del POR, occorre verificare l’allineamento con la programmazione finanziaria, avendo il POR per la parte energetica subito delle modifiche. Per ogni azione occorre individuare puntualmente le relative fonti di finanziamento all’interno del POR e del PSR.</td>
<td>I4. Nel documento recante “Indirizzi per l’adeguamento del PEAR 2014-2020 alle prescrizioni del Parere Motivato n. 47/2015” viene condotta un’analisi degli strumenti di programmazione disponibili (POR FESR, PSR e POR FSE) e vengono riportate le misure che, per ciascun Programma, concorrano all’attuazione del PEAR. In fase di adeguamento del PEAR vengono riviste ed integrate le azioni di Piano sulla base delle indicazioni relative alla Programmazione dei Fondi. Occorre tuttavia precisare che non ci si attende che POR FESR, PSR e POR FSE garantiscono la copertura finanziaria delle azioni di Piano, ma che fungano da “innesco” per alcuni settori e tecnologie.</td>
</tr>
<tr>
<td>P5. FASI ATTUATIVE: Occorre che le fasi attuative</td>
<td>I5. Si provvede a raccordare il PEAR con il POR FESR, il POR</td>
</tr>
<tr>
<td>SINTESI DELLE PRESCRIZIONI</td>
<td>SINTESI DEGLI INDIRIZZI DI RECEPIMENTO</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>siano meglio definite e dettagliate, mediante indicazione ove possibile dei soggetti a cui è demandata l’attuazione nonché dei tempi entro cui è attesa.</td>
<td>FSE ed il PSR, dettagliando le azioni di Piano sulla base di quanto indicato negli strumenti di programmazione e di quanto emerso durante gli incontri svolti con gli uffici regionali per il recepimento delle prescrizioni della VAS.</td>
</tr>
<tr>
<td></td>
<td>In fase di adeguamento del PEAR alle prescrizioni del PM n. 47/2015 vengono integrate all’interno del PEAR le misure di attenzione e mitigazione individuate dal Rapporto Ambientale.</td>
</tr>
<tr>
<td></td>
<td>Relativamente ai criteri prestazionali e localizzativi vengono indicati nel PEAR, i criteri espressi nella normativa regionale, nazionale ed europea e negli strumenti di pianificazione regionali vigenti.</td>
</tr>
</tbody>
</table>

P6. NORMATIVA ENERGETICA ED AMBIENTALE: il richiamo agli strumenti normativi vigenti non è sistematico né completo e trasparente. Anche gli indirizzi normativi regionali vigenti che stabiliscono prerequisiti per l’autorizzabilità degli impianti a fonte rinnovabile, devono essere sistematicamente richiamati.

P7. EFFICIENZA ENERGETICA DEGLI EDIFICI: occorre individuare strumenti attuativi volti a sostenere la massima efficienza energetica degli edifici

P8. CAMBIAENTI CLIMATICI: inserire tra i documenti di riferimento la “Strategia Europea di Adattamento ai Cambiamenti Climatici” e quindi considerare la tematica della vulnerabilità delle infrastrutture energetiche e della resilienza dei sistemi energetici agli impatti dei cambiamenti climatici.

P9. EOLICO OFF-SHORE: non esistono motivi ostativi allo sviluppo del tema, favorito attraverso investimenti (POR) volti all’approfondimento della fattibilità tecnico-economica di tali tipologie nella realtà ligure.

P10. IDROELETTRICO: l’azione necessita di essere maggiormente definita e dettagliata, con indicazione di responsabilità, risorse, tempi.

P11. BIOMASSA FORESTALE: devono essere richiamati gli indirizzi regionali attinenti alla filiera corta (DGR n. 1122/2012) e riallineare Pearl con POR, che a seguito di osservazioni della Commissione Europea non contempla più il finanziamento di impianti a biomassa (ma potenza lo sfruttamento del biogas).

P12. SOLARE TERMICO: è necessario meglio definire le indicazioni operative a sostegno del raggiungimento dell’obiettivo indicato.

P13. ALTERNATIVE: il raffronto deve essere completato con il grafico dello stato 2003, così da qualificare gli effetti del precedente piano e l’efficienza dei finanziamenti impiegati.
<table>
<thead>
<tr>
<th>SINTESI DELLE PRESCRIZIONI</th>
<th>SINTESI DEGLI INDIRIZZI DI RECEPIMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>P15. REALIZZAZIONI ACQUEDOTTISTICHE: occorrono condizioni operative per far sì che realizzazioni più problematiche dal punto di vista ambientale non abbiano luogo.</td>
<td>I15. Si provvede, in fase di adeguamento del PEAR 2014-2020, alla revisione del relativo Capitolo del Piano.</td>
</tr>
<tr>
<td>P16. CARTA DELLE AREE NON IDONEE ALLA COLLOCAZIONE DEGLI IMPIANTI EOLICI e CARTA DELLE AREE NON IDONEE ALL’IDROELETTRICO: - integrare all’interno della Carta i livelli di sensibilità/innesto che Direzione Regionale MIBAC e Soprintendenza BPA individuano nel proprio contributo; - costituire un tavolo di lavoro (con soggetti, tempi e scadenze) volto a sviluppare il confronto per quanto concerne gli aspetti paesaggistici, naturalistici, geomorfologici; - costituire un tavolo di lavoro (con soggetti, tempi e scadenze – eventualmente coincidente col precedente) volto a definire la mappa dei tratti fluviali non idonei all’idroelettrico, ad integrazione di quanto contenuto nel PTA ed in risposta alle richieste della Commissione Europea.</td>
<td>I16. Per la Cartografia delle Aree Non Idonee alla collocazione di impianti eolici si propone la costituzione di un apposito Tavolo Tecnico con la funzione di “individuare criteri condivisi per la revisione della Cartografia delle Aree Non Idonee alla collocazione di impianti eolici di cui alla DCR. n. 3/2009”. In relazione alla definizione dei tratti fluviali non idonei all’idroelettrico, a seguito di approfondimenti svolti con il settore regionale competente, si ritiene opportuno, recepire i contenuti del PTA, il cui patrimonio conoscitivo consente il superamento di osservazioni sostanziali a suo tempo formulate, e prevedere, nella fase attuativa del PEAR, lo svolgimento di attività funzionali alla messa a punto degli adeguati strumenti, secondo quanto indicato alla prescrizione P10. Viene inoltre attivato, analogamente a quanto svolto per la fonte eolica, uno specifico Tavolo Tecnico dedicato all’idroelettrico, che prevede il coinvolgimento dei soggetti con competenze trasversali in materia (risorse idriche, biodiversità, paesaggio, assetto del territorio…). Si veda anche P10.</td>
</tr>
<tr>
<td>P17. TELERISCALDAMENTO: Occorre dare una definizione univoca di cosa si intenda per teleriscaldamento, ai fini dell’attuazione del piano e delle necessarie garanzie di efficienza energetica e sostenibilità ambientale.</td>
<td>I17. Viene fornita la definizione di teleriscaldamento: Con teleriscaldamento/teleraffreddamento si intende una rete di tubazioni, quasi sempre a circuito chiuso che permette di trasportare calore/freddo a distanza (tramite fluidi termovettori quali acqua o vapor acquoso surriscaldati) fino ai singoli utilizatori. Il calore/freddo distribuito all’utenza viene prodotto da apposite centrali o recuperato da stabilimenti dedicati a scopi produttivi diversi. Il calore prodotto viene trasportato attraverso le reti di teleriscaldamento, viene quindi ceduto agli utenti attraverso appositi scambiatori di calore, contabilizzato con appositi strumenti di misura e quindi periodicamente fatturato all’utenza. L’esercizio commerciale di una rete di teleriscaldamento o teleraffrescamento richiede le seguenti operazioni: - produzione calore/freddo; - trasporto e distribuzione a distanza; - cessione all’utenza; - contabilizzazione e fatturazione.</td>
</tr>
<tr>
<td>P18. COMPARTO SUOLO: vengono richiamati i contenuti salienti del contributo del settore regionale competente, nel quale si rilevano alcune potenziali interferenze in relazione alle</td>
<td>I18. Nella versione definitiva del PEAR vengono riportati i contenuti salienti del contributo del settore regionale competente.</td>
</tr>
<tr>
<td>SINTESI DELLE PRESCRIZIONI</td>
<td>SINTESI DEGLI INDIRIZZI DI RECEPIMENTO</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>linee di sviluppo del PEAR.</td>
<td></td>
</tr>
<tr>
<td>P19. VALUTAZIONE DI INCIDENZA: il parere finale è quindi positivo con prescrizioni sul PEARL, mentre è negativo sulla revisione della Carta delle aree non idonee all’elico proposta.</td>
<td>I19. Si veda la prescrizione P16.</td>
</tr>
<tr>
<td></td>
<td>6.13.</td>
</tr>
<tr>
<td>P20. MONITORAGGIO: integrare il programma di monitoraggio del PEAR anche con il monitoraggio di PSR e PTA. Rivedere gli indicatori proposti con una riduzione del numero complessivo. Individuare responsabilità, risorse e tempi con maggiore schematicità. Individuare le risorse necessarie nell’ambito del POR.</td>
<td>I20. In fase di adeguamento del PEAR viene effettuata la revisione degli indicatori (confronto con sistemi monitoraggio PSR e PTA) e del relativo piano di monitoraggio. 6.14.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P21. IMPIANTI A BIOMASSA: l’indicazione esplicita di soglie dimensionali era contenuta nelle relative misure del POR. Per maggior chiarezza è ora necessario esplicitare nel PEAR taglia e caratteristiche degli impianti ritenuti ammissibili ai fini del raggiungimento dell’obiettivo relativo alla biomassa.</td>
</tr>
</tbody>
</table>

Il Servizio Energia del Dipartimento Sviluppo Economico ha provveduto all’attivazione dei due Tavoli Tecnici di cui al precedente punto 4 e alla redazione conclusiva del PEAR, secondo quanto previsto dall’Art. 10 comma 4 della L.R. n. 32/2012 e ss.mm.ii., recependo le prescrizioni indicate nel suddetto Parere Motivato.
1. Aspetti procedurali e iter seguito

1.1. Elementi della Dichiarazione di Sintesi

Il presente documento costituisce la “Dichiarazione di Sintesi” del processo di Valutazione Ambientale Strategica del Piano Energetico Ambientale Regionale della Regione Liguria.

Allegato D.L.R.32/2012 “Disposizioni in materia di valutazione ambientale strategica (VAS)...”
La dichiarazione di sintesi è il documento attraverso il quale l’autorità procedente, nel momento di informazione della decisione, illustra in che modo le considerazioni ambientali sono state integrate nel piano o programma e come si è tenuto conto del rapporto ambientale e degli esiti delle consultazioni, nonché le ragioni per le quali è stato scelto il piano o il programma adottato, alla luce delle alternative possibili. È fondamentale per ripercorrere il processo decisionale e renderlo trasparente ed efficace.

La dichiarazione di sintesi è redatta ai sensi:
- dell’art.9 della Direttiva2001/42/Ce che prevede che, all’adozione del piano le autorità ed il pubblico consultati siano informati e ad essi vengano messa a disposizione piano adottato,dichiarazione di sintesi e le misure adottate in merito al monitoraggio;
- del recepimento italiano avutosi nell’ambito del Dlgs n.152/2006 e ss.mm.ed ii.,che richiama la dichiarazione di sintesi alla lettera b) dell’art.17 come momento centrale dell’informazione sulla decisione discendente dall’applicazione della procedura di VAS;
- della L.R.32/2012 e ss.mm.ed ii., “Disposizioni in materia di valutazione ambientale strategica(VAS)...”, così come modificata dalla L.R. 6/2017 che ne ha ridefinito le competenze e il campo di applicazione, di cui si riporta il pertinente art. 10.

L.R.32/2012-Art.10. (Valutazione ambientale strategica)
1. La Regione, conclusa la fase di consultazione (...), esaminati la proposta di piano o programma, il rapporto ambientale comprensivo della sintesi non tecnica, nonché le osservazioni ed i pareri acquisiti (...), elabora le valutazioni finalizzate all’emissione del parere regionale, anche tramite apposita Conferenza di servizi istruttoria (...), e le sottopone al Comitato VAS (...).
2. La Giunta regionale, nel termine di 90 giorni dall’avvenuta conclusione della fase di consultazione (...), acquisito il parere del Comitato VAS, esprime il proprio motivato pronunciamento avente efficacia vincolante, comprensivo della valutazione sulla adeguatezza del piano di monitoraggio, e lo trasmette all’autorità procedente.

3. Il provvedimento è pubblicato nel Bollettino Ufficiale della Regione Liguria, nonché nel sito web dell’autorità procedente e dell’autorità competente.

4. L’autorità procedente o il proponente, in collaborazione con l’autorità competente, provvede in conformità al provvedimento di cui al comma 2 alla redazione conclusiva del piano o programma per la sua approvazione definitiva.

5. L’atto definitivo di approvazione del piano o programma è pubblicato nel BURL con l’indicazione della sede ove si può prendere visione dello stesso e degli atti concernenti il procedimento. Tale pubblicazione, anche nei siti web delle autorità interessate, comprende:
 a) il piano o programma approvato;
 b) il provvedimento motivato espresso dall’autorità competente;
 c) una dichiarazione di sintesi in cui si illustra in che modo le considerazioni ambientali sono state integrate nel piano o programma e come si è tenuto conto del rapporto ambientale e degli esiti delle consultazioni, nonché le ragioni per le quali è stato scelto il piano o il programma adottato, alla luce delle alternative possibili che erano state individuate, secondo lo schema di cui all’allegato D;
 d) le misure adottate in merito al monitoraggio;
 e) le eventuali misure correttive da adottare in caso di impatti negativi.

Lo specifico allegato Dalla L.R.32/2012 indica i contenuti della dichiarazione di sintesi.

Allegato D (Articolo 10) - L.R. 32/2012
La dichiarazione di sintesi è il documento attraverso il quale l’autorità procedente, nel momento di informazione della decisione, illustra in che modo le considerazioni ambientali sono state integrate nel piano o programma e come si è tenuto conto del rapporto ambientale e degli esiti delle consultazioni, nonché le ragioni per le quali è stato scelto il piano o il programma adottato, alla luce delle alternative possibili. È fondamentale per ripercorrere il processo decisionale e renderlo trasparente ed efficace.
Le informazioni da fornire, in modo schematico e facilmente leggibile, sono le seguenti:
1. Consultazione: descrizione della procedura di valutazione effettuata, dei soggetti competenti coinvolti, dei pareri e dei relativi tempi, indicando per le due fasi di scoping e di valutazione:
 - numero e date degli incontri effettuati;
 - contributi forniti nell’ambito dello scoping dai soggetti competenti in materia ambientale;
 - pareri richiesti ed evidenza di quelli pervenuti, con sintesi dei contenuti e di come se ne è tenuto conto nella formulazione del parere motivato.
2. Fase pubblica:
 - indicazione del processo partecipativo attivato per la formazione del piano, con evidenza dei portatori di interessi coinvolti, delle modalità e di come si è tenuto conto nella redazione del piano/programma dei suoi esiti;
 - indicazione delle osservazioni pervenute nel corso della fase pubblica del procedimento di VAS, da parte di chi, e di come se ne è tenuto conto nella redazione del parere motivato.
3. **Alternative:** descrizione delle eventuali alternative considerate, anche in termini di stadi evolutivi del piano o programma, e sintetica illustrazione delle ragioni della scelta finale, attraverso la sintesi degli effetti ambientali attribuibili ad ognuna.

4. **Integrazione delle considerazioni ambientali** nel piano o programma: devono essere indicati, per i vari comparti ambientali e i relativi obiettivi di tutela, gli obiettivi e le azioni di piano che su di essi producono effetti e le eventuali misure di mitigazione/compensazione. Il richiamo deve esser e puntuale ai singoli obiettivi, azioni, norme di attuazione del piano o programma.

5. **Adeguamento agli esiti della valutazione ambientale:** descrizione del modo in cui si è tenuto conto del parere motivato e delle eventuali prescrizioni in esso contenute, attraverso l'indicazione puntuale delle parti di piano o programma variate, con evidenza del raffronto prima-dopo e argomentazione della modifica effettuata (rispetto ad altre possibili).

La presente Dichiarazione rispecchia quanto richiesto dalla normativa vigente in materia e ai contenuti del sopra richiamato allegato D e si articola in un testo sintetico che illustra le varie fasi di consultazione e di inchiesta del processo di VAS applicato al PEAR.

Gli elaborati del PEAR e gli elaborati della VAS, compresa la presente Dichiarazione di Sintesi ed il Parere Motivato del Settore VIA, sono pubblicati sul portale ambientale della Regione Liguria (www.ambienteinliguria.it).

1.2. Aspetti normativi e procedurali

La Valutazione Ambientale Strategica di piani e programmi è stata introdotta a livello europeo con la Direttiva 2001/42/CE e recepita a livello nazionale con D Lgs n. 152 del 3 aprile 2006 e ss.mm.ii. La Legge Regionale n. 32/2012 “Disposizioni in materia di valutazione ambientale strategica (VAS)” e ss.mm.ii. e disciplina le procedure della Valutazione Ambientale Strategica sui piani e programmi. Il Piano Energetico Ambientale Regionale rientra fra le tipologie di documenti di pianificazione da sottoporre a VAS ai sensi dell’art. 7 del D Lgs n. 152/2006 e ss.mm.ii. e dell’art. 3 c.1 della Legge n. 32/2012. Il presente e i successivi paragrafi illustrano il percorso di predisposizione dello Schema di piano ed il relativo sistema di informazione, comunicazione e consultazione e come tale percorso sia integrato nel processo di VAS, fortemente caratterizzato dalla partecipazione e dalla condivisione delle parti interessate.

Per quanto riguarda la procedura di approvazione (ex art.12 LR n. 18/1999), il PEAR è approvato dal Consiglio Regionale, su proposta della Giunta, assicurando adeguata pubblicità e massima partecipazione. In particolare:

1. la Giunta Regionale approva lo schema di Piano e delega l'Assessore competente per materia ad indire e coordinare l'inchiesta pubblica sui contenuti del documento;
2. l'Assessore competente per materia determina le modalità dell'inchiesta e nomina il Presidente dell'inchiesta pubblica;
3. l'inchiesta pubblica ha luogo presso la sede della Regione, prevede la pubblicazione del relativo avviso e fornisce la possibilità a chiunque di presentare osservazioni entro i successivi 45 giorni;
4. trascorsi 90 giorni dalla data d'indizione, il Presidente chiude l'inchiesta pubblica e trasmette alla Giunta le osservazioni presentate nel corso dell'inchiesta dai soggetti consultati con le proprie valutazioni;
5. la Giunta Regionale, dato conto delle osservazioni pervenute nel corso dell'inchiesta pubblica, formula la proposta di schema definitivo di Piano al Consiglio Regionale, per l'approvazione nei giorni successivi.

Le fasi del processo VAS, alle quali è soggetto il PEAR, accompagnano tutti i passaggi previsti nella procedura di adozione e approvazione del Piano, dalle fasi di redazione, adozione, fino all’approvazione, in un processo continuo. Questo processo continuo di valutazione consente alla VAS di esplicare efficacemente, nei diversi passaggi del Piano, l'obiettivo di contribuire all'integrazione di considerazioni ambientali finalizzate a promuovere uno sviluppo sostenibile.
del territorio ligure. Per evitare duplicazioni ed integrare opportunamente il processo di VAS e la procedura di Piano sono stati individuati temi e passaggi comuni.
La procedura di VAS del PEAR si articola nelle seguenti fasi:

- Fase di redazione del Rapporto Ambientale, ai sensi dell’art. 13 del D Lgs n. 152/2006 e ss. mm. ii. e dell’art. 8 della LR n. 32/2012. Questa fase inizia con la trasmissione da parte dell’Autorità Procedente (Settore Ricerca, Innovazione ed Energia), del Rapporto Ambientale Preliminare, e del Piano sottoposto a VAS, all’Autorità Competente ed ai Soggetti Competenti in Materia Ambientale. Questa fase ha durata massima di 90 giorni, salvo quanto diversamente concordato. Al termine del periodo, con le indicazioni e i contributi forniti, si provvede a redigere il Rapporto Ambientale per la fase successiva;
- Fase della consultazione pubblica, ai sensi dell’art. 14 del D Lgs n. 152/2006 e ss. mm. ii. e dell’art. 9 della LR n. 32/2012. Questa fase inizia con la pubblicazione sul Bollettino Ufficiale della Regione Liguria (BURL) dell’avviso di avvio della fase di consultazione del Rapporto Ambientale, della Sintesi non tecnica del rapporto stesso e del Piano sottoposto a VAS. Per tale fase è prevista una durata minima di 60 giorni. Gli elaborati da sottoporre a consultazione saranno depositati e resi consultabili, in formato cartaceo, presso il Dipartimento Ambiente e pubblicati sul sito www.ambienteinliguria.it.
- Fase di valutazione del Rapporto Ambientale e degli esiti della consultazione, ai sensi dell’art.15 del D Lgs n. 152/2006 e ss. mm. ii. e dell’art. 10 della LR n. 32/2012. Questa fase si conclude entro i 90 giorni successivi alla conclusione della fase di consultazione con l’espressione da parte dell’Autorità competente del Parere Motivato e delle indicazioni delle eventuali modifiche ed integrazioni da apportare al Rapporto Ambientale e al Progetto di Piano. Di conseguenza, conclusa la fase di consultazione, l’Autorità procedente deve trasmettere all’Autorità Competente le osservazioni pervenute;
- Fase della decisione, ai sensi degli artt. 16 e 17 del D Lgs n. 152/2006 e ss. mm. ii. e dell’art. 10 della LR n. 32/2012. La decisione finale deve essere pubblicata sul BURL con l’indicazione della sede ove si può prendere visione dello stesso e degli atti concernenti il procedimento. Tale pubblicazione avviene anche sui siti web delle autorità interessate e comprende il piano approvato e il provvedimento motivato espresso dall’autorità competente;
- Fase del monitoraggio, ai sensi dell’art. 18 del D Lgs n. 152/2006 e ss. mm. ii. e dell’art. 14 della LR n. 32/2012. La VAS si configura come un processo integrato e continuo in tutto il ciclo di vita di un Piano. Ai fini della verifica del raggiungimento degli obiettivi di sostenibilità fissati nel Rapporto Ambientale, il sistema di monitoraggio diventa uno strumento fondamentale della VAS, che deve essere implementato per tutta la durata del Piano.

1.3. Iter del PEAR

In fase di istruttoria dell’Autorità Competente sono stati consultati i soggetti competenti in materia ambientale individuati con riferimento ai contenuti specifici del piano, nonché le strutture regionali competenti in relazione alle tematiche trattate. L’istruttoria condotta dal responsabile del procedimento del Settore VIA, con la collaborazione dei soggetti competenti in materia ambientale che hanno ritenuto di formulare osservazioni, e delle altre strutture regionali interessate si è concretizzata nel “Parere Motivato n. 47/2015”, reso a voti unanimi dalla sezione per la VAS del CTR per il Territorio nella seduta del 29 aprile 2015.

2.1. Struttura del processo di VAS

Il processo di valutazione ambientale parte dall'analis i dello stato dell'ambiente e delle risorse per procedere all'identificazione delle criticità e delle potenzialità del contesto, che vengono affrontate e gestite da una pianificazione volta alla sostenibilità dello sviluppo, al benessere ed alla qualità della vita delle persone.

Di seguito si presenta lo schema logico del processo di VAS seguito dal PEAR al fine di meglio chiarire i flussi che hanno portato al percorso integrato PEAR/VAS, intendendo quest’ultima non come semplice “valutazione a monte” del Piano, ma come ausilio alla sua costruzione.

Sulla base del suddetto schema logico il Rapporto Ambientale, in conformità a quanto stabilito dall’Allegato C di cui alla LR n. 32/2012, è stato articolato secondo le seguenti parti:

- **Parte Prima - QUADRO METODOLOGICO**: viene spiegato l’approccio teorico su cui si basa la valutazione, gli aspetti metodologici e procedurali/normativi, le finalità e la struttura del Rapporto Ambientale;
- **Parte Seconda - QUADRO CONOSCITIVO**: contiene l’analisi del contesto di riferimento del PEAR, in termini di situazione energetica, normativa e pianificatoria/programmatica, ma anche del quadro ambientale e di pianificazione di riferimento in cui si insinisce il PEAR;
- **Parte Terza - QUADRO PROGETTUALE**: analizza i vincoli delle politiche comunitarie, nazionali e regionali, i punti di forza e di debolezza della pianificazione energetica vigente e delinea gli obiettivi e le linee di sviluppo del Piano, anche sulla base degli esiti del processo partecipativo;
- **Parte Quarta – QUADRO VALUTATIVO**: viene condotta l’analisi di coerenza esterna degli obiettivi di Piano prescelto con gli obiettivi di sostenibilità e con la pianificazione regionale e sovraordinata e l’analisi di coerenza tra obiettivi e linee di sviluppo del Piano. Vengono considerati i potenziali impatti derivanti dalle diverse opzioni tecnologiche ed analizzate le possibili alternative di Piano; vengono infine valutati i possibili impatti e le eventuali misure di attenzione e mitigazione;
- **Parte Quinta – PIANO DI MONITORAGGIO**: accompagna in modo integrato le sezioni sopra esposte. Il monitoraggio è strettamente legato al quadro conoscitivo, utilizzando per quanto possibile trend e indicatori che individuiuno il “momento zero” su cui poggiare la progettazione stessa del sistema di monitoraggio futuro del Piano. A supporto del monitoraggio e in connessione con il processo partecipativo, viene proposto un “monitoraggio partecipato”, che permetta in futuro di discutere dei risultati del PEAR per aumentarne l’efficacia.
2.2.Elementi di base per la definizione degli Obiettivi dello Schema di Piano

Per la definizione degli Obiettivi del PEAR si sono esaminate le varie tecnologie e gli elementi derivanti dagli accordi internazionali, dalle Direttive comunitarie, dalla normativa nazionale e regionale, dalla programmazione europea e nazionale.

Si è tra l’altro proceduto ad una analisi (riportata di seguito in sintesi) dei punti di forza, di debolezza, delle opportunità e delle minacce (Analisi SWOT) che caratterizzano il settore energetico in Liguria. I punti di forza e di debolezza sono relativi ad elementi caratterizzanti il sistema energetico regionale ed il contesto economico ed ambientale del territorio ligure. Le opportunità e le minacce attengono invece a fattori esterni e non direttamente connessi al sistema regionale: in tabella sono rappresentate le sintesi delle analisi delle diverse componenti per ciascuno dei principali settori e scelte tecnologiche del Piano.
<table>
<thead>
<tr>
<th>SETTORI</th>
<th>analisi interna (attributi del sistema)</th>
<th>analisi esterna (attributi del contesto)</th>
</tr>
</thead>
</table>
| Riduzione del fabbisogno energetico | **S**
- punti di forza
- norme e interventi con particolare riferimento all’efficienza energetica negli edifici
- ottima performance degli interventi grazie al clima favorevole
- ricco tessuto imprenditoriale con competenze nell’elettromeccanica, l’elettronica di potenza, ICT, domotica,
- mondo della ricerca.
- settore edile con un basso livello di specializzazione
- presenza di grandi centri storici e di piccoli borghi
- evoluzione tecnologica
- norme europee stringenti su materiali e processi
- sistema di incentivazione nazionale
- ridotta capacità di investimento di famiglie e imprese | **T**
- ridotta capacità di investimento di famiglie e imprese |
| **W**
- elementi di debolezza
- mancanza di cultura che ostacola la penetrazione massiva di questa tecnologia sul mercato
- valori paesaggistici e culturali da preservare
- mancanza di cultura che ostacola la penetrazione massiva di questa tecnologia sul mercato
- evoluzione tecnologica nel breve - medio periodo
- crisi economica
| **O**
- opportunità
- riduzione costo della tecnologia
- sviluppo tecnologico mirato agli aerogeneratori di grossa taglia
- cantieristica e logistica portuale per lo sviluppo dell’eolico offshore.
- l’intero bacino del Mediterraneo come mercato
| **E**
- minacce
- sfruttamento autoconsumo ed agevolazioni fiscali
- cambiamenti climatici con ricadute sui regimi idrici |
| **F**
- potenziale sfruttamento dei fanghi di depurazione e sistemi di captazione nelle discariche ai fini della produzione energetica da biogas
- possibili difficoltà nel collocare sul mercato il compost e/o ammendante ottenuto dal digestato, a causa del timore che il suo uso in agricoltura possa degradare o rendere insalubre il prodotto agricolo |
| **FER – Fonti Energetiche Rinnovabili** | **S**
- disponibilità di siti idonei all’installazione
- estensione est-ovest del territorio regionale
- numerosi pendii e strutture edili esposti a sud
- buon livello di irrigazione del territorio
- aziende industriali attive nel settore fotovoltaico
- collegato con il mondo della ricerca
- quadro normativo regionale
- vincoli ambientali e paesaggistici
- avversione delle comunità locali
- sviluppo tecnologico mirato agli aerogeneratori di grossa taglia
- cambiamenti climatici con ricadute sui regimi idrici |
| **W**
- elementi di debolezza
- mancanza di cultura che ostacola la penetrazione massiva di questa tecnologia sul mercato
- valori paesaggistici e culturali da preservare
- mancanza di cultura che ostacola la penetrazione massiva di questa tecnologia sul mercato
- evoluzione tecnologica nel breve - medio periodo
- crisi economica |
| **O**
- opportunità
- riduzione costo della tecnologia
- sviluppo tecnologico mirato agli aerogeneratori di grossa taglia
- cantieristica e logistica portuale per lo sviluppo dell’eolico offshore.
- l’intero bacino del Mediterraneo come mercato
| **E**
- minacce
- sfruttamento autoconsumo ed agevolazioni fiscali
- cambiamenti climatici con ricadute sui regimi idrici |
| **Idroeletrico** | **S**
- fonte rinnovabile più diffusa sul territorio
- possibilità di riattivare vecchie centrali in disuso
- siti maggiormente produttivi già sfruttati
- vincoli ambientali |
| **W**
- elementi di debolezza
- mancanza di cultura che ostacola la penetrazione massiva di questa tecnologia sul mercato
- valori paesaggistici e culturali da preservare
- mancanza di cultura che ostacola la penetrazione massiva di questa tecnologia sul mercato
- evoluzione tecnologica nel breve - medio periodo
- crisi economica |
| **O**
- opportunità
- riduzione costo della tecnologia
- sviluppo tecnologico mirato agli aerogeneratori di grossa taglia
- cantieristica e logistica portuale per lo sviluppo dell’eolico offshore.
- l’intero bacino del Mediterraneo come mercato
| **E**
- minacce
- sfruttamento autoconsumo ed agevolazioni fiscali
- cambiamenti climatici con ricadute sui regimi idrici |
| **Biogas** | **S**
- limita il rilascio in atmosfera del metano, comunque generato dalla fermentazione dei residui organici in discarica, il cui potere climaterante è 25 volte quello della CO2.
- Tecnologia matura con filiera e mercato consolidato.
- il territorio non offre potenzialità di produzione energetica da coltivazioni dedicate
- conseguentemente il potenziale energetico regionale è principalmente legato all’utilizzo della frazione organica dei rifiuti per la produzione di biogas con processi di digestione anaerobica.
- incentivi nazionali (tariffa onnicomprensiva e TEE)
- potenziale sfruttamento dei fanghi di depurazione e sistemi di captazione nelle discariche ai fini della produzione energetica da biogas |
| **W**
- elementi di debolezza
- mancanza di cultura che ostacola la penetrazione massiva di questa tecnologia sul mercato
- valori paesaggistici e culturali da preservare
- mancanza di cultura che ostacola la penetrazione massiva di questa tecnologia sul mercato
- evoluzione tecnologica nel breve - medio periodo
- crisi economica |
| **O**
- opportunità
- riduzione costo della tecnologia
- sviluppo tecnologico mirato agli aerogeneratori di grossa taglia
- cantieristica e logistica portuale per lo sviluppo dell’eolico offshore.
- l’intero bacino del Mediterraneo come mercato
| **E**
- minacce
- sfruttamento autoconsumo ed agevolazioni fiscali
- cambiamenti climatici con ricadute sui regimi idrici |

259
La necessità di un aggiornamento della pianificazione regionale in materia di energia nasce in un contesto di normative comunitarie, nazionali e regionali che concorrono, unitamente alla valutazione della situazione energetica ed ambientale, a determinarne gli obiettivi.

A livello europeo numerose sono le raccomandazioni, i piani e le strategie messe in campo dalla Commissione Europea al fine di attuare gli obiettivi della politica ambientale delineata con il Protocollo di Kyoto del 2005 e tra questi il Libro Verde della Commissione dell'8 marzo 2006 "Una strategia europea per un'energia sostenibile, competitiva e sicura", che costituisce una tappa fondamentale nello sviluppo di una politica energetica dell'Unione europea (UE) al fine di affrontare sfide importanti nel settore dell'energia.

Le raccomandazioni del Libro Verde hanno costituito la base per la nuova politica energetica europea.

79 Per il dettaglio delle normative si veda il capitolo relativo alla Coerenza Esterna del PEAR 2014 – 2020 del Rapporto Ambientale

<table>
<thead>
<tr>
<th>SETTORI</th>
<th>analisi interna (attributi del sistema)</th>
<th>analisi esterna (attributi del contesto)</th>
<th>T minacce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S punti di forza</td>
<td>W elementi di debolezza</td>
<td>O opportunità</td>
</tr>
<tr>
<td>Biomassa legnosa</td>
<td>• grande disponibilità di biomassa locale</td>
<td>• orografia del territorio non consente agevole accesso</td>
<td>• incentivi nazionali biogas: tariffa omnicomprensiva favorevole, di acquisto dell’energia elettrica prodotta dal QSE</td>
</tr>
<tr>
<td></td>
<td>• possibilità di installazione impianti di piccola e media taglia</td>
<td>• forte parcellizzazione delle proprietà</td>
<td>• Titoli di Efficienza Energetica, per risparmio energetico qualora il biogas venga utilizzato per la produzione di calore in caldaie e cogeneratori.</td>
</tr>
<tr>
<td></td>
<td>• urgenza prevenzione disastri naturali (frane, alluvioni, incendi boschivi)</td>
<td>• avversione comunità locali per impianti di grossa taglia (timori rifiuti)</td>
<td>• possibile sfruttamento del potenziale energetico dei fanghi di depurazione.</td>
</tr>
<tr>
<td></td>
<td>• manutenzione del territorio</td>
<td>• emissione particolato</td>
<td>• emissione particolato</td>
</tr>
<tr>
<td></td>
<td>• fruizione turistica</td>
<td>• mancanza meccanismi di remunerazione dei servizi non-energetici</td>
<td>• manutenzione del territorio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• fruizione turistica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• orografia del territorio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• urgenza prevenzione disastri naturali (frane, alluvioni, incendi boschivi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• manutenzione del territorio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• fruizione turistica</td>
</tr>
<tr>
<td>Solare Termico</td>
<td>• tecnologia semplice, a costi contenuti e con tempi di ritorno ragionevoli</td>
<td>• impianti meno convenienti per seconde case</td>
<td>• agevolazioni fiscali (Conto Termico, detrazioni fiscali)</td>
</tr>
<tr>
<td></td>
<td>• in Liguria buone performance energetiche</td>
<td>• l’affidabilità dell’impianto dipende dalla competenza dell’installatore</td>
<td>• scarso interesse a convertire impianti alimentati a gas metano con impianti solari termici</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• questa tecnologia se utilizzata per il riscaldamento ambienti non è sempre compatibile con sistemi di riscaldamento esistenti preferibili sistemi a pannelli radianti piuttosto che termosifoni</td>
<td>• gap culturale rispetto ad altre tecnologie</td>
</tr>
<tr>
<td>Pompe di Calore</td>
<td>• tecnologia efficiente che si presta sia per il riscaldamento invernale che per il raffrescamento estivo</td>
<td>• costi più elevati rispetto a quelli delle caldaie a gas e maggiore complessità tecnologica</td>
<td>• possibile integrazione in reti Smart ai fini della realizzazione di sistemi di Demand-Side-Management</td>
</tr>
<tr>
<td></td>
<td>• tecnologia matura con mercato consolidato</td>
<td>• solo una quota dell’energia prodotta è rinnovabile</td>
<td>• tariffa elettrica agevolata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• rumore e rischi di perdite di gas refrigerante</td>
<td>• gap culturale: ridotta conoscenza della tecnologia da parte degli utenti;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• scarsa familiarità di installatori e progettisti con la tecnologia;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• crisi economica</td>
</tr>
</tbody>
</table>

Tabella 2.2-A: sintesi dell’analisi SWOT del Rapporto Ambientale Preliminare
Il 23 gennaio 2008 la Commissione UE ha adottato il pacchetto di proposte “Climate action and renewable energy package” che intende condurre la UE a ridurre di almeno il 20% rispetto ai livelli del 1990 le emissioni di gas serra, a portare al 20% la quota di consumi finali da fonti rinnovabili entro il 2020 (e una quota di rinnovabili nei trasporti pari al 10% del consumo finale di energia per ogni stato membro) e a ridurre del 20% i consumi finali di energia rispetto alle proiezioni al 2020 aumentando l’efficienza energetica.

Il pacchetto legislativo, diventato formalmente vincolante con l'approvazione da parte del Consiglio Europeo il 6 aprile 2009, fissa, attraverso alcune importanti Direttive e decisioni della Commissione Europea, obiettivi giuridicamente vincolanti per gli Stati Membri, da raggiungere secondo specifici piani d’azione nazionali. Questi gli obiettivi per l’Italia:

<table>
<thead>
<tr>
<th>Obiettivi</th>
<th>Italia</th>
<th>Riferimento normativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obiettivo per la quota di energia da fonti rinnovabili sul consumo finale di energia, 2020 (S(_{2020}))</td>
<td>17 %</td>
<td>Direttiva 2009/28/CE</td>
</tr>
<tr>
<td>Limiti delle emissioni di gas a effetto serra stabiliti per gli Stati Membri per il 2020 rispetto ai livelli di emissioni di gas ad effetto serra del 2005</td>
<td>-13 %</td>
<td>COD 406/2009/CE</td>
</tr>
<tr>
<td>Obiettivo per la quota di rinnovabili in tutte le forme di trasporto sul consumo finale di energia nel settore trasporti</td>
<td>10%</td>
<td>Direttiva 2009/28/CE</td>
</tr>
</tbody>
</table>

Tabella 2.2-B: Obiettivi italiani derivanti dalla normativa europea

A livello nazionale il recepimento delle Direttive Europee delinea un quadro normativo piuttosto articolato, che coinvolge aspetti autorizzativi, procedure e regimi di sostegno.

Accanto alla semplificazione delle procedure amministrative per l’autorizzazione degli impianti ed alla ridefinizione del quadro degli incentivi, con il Decreto del Ministero dello Sviluppo Economico 15 marzo 2012, il cosiddetto “Burden Sharing”, è stata definita la ripartizione dell’obiettivo nazionale di sviluppo delle fonti rinnovabili (del 17%) tra le varie regioni italiane, assegnando alla Liguria l’obiettivo finale del 14,1% e obiettivi intermedi biennali, come riportati in Tabella 3.1.1-B. L’obiettivo è dato dal rapporto tra i consumi finali da fonti rinnovabili ed i consumi finali lordi regionali.

Per poter conseguire gli obiettivi del Decreto occorre quindi agire simultaneamente sul numeratore e denominatore, ovvero incrementando l’utilizzo delle fonti rinnovabili e riducendo i consumi finali lordi:

\[
\text{Consumo finale da fonti rinnovabili} \over \text{Consumo finale lordo} = 14,1 \%
\]

Tabella 2.2-A: Obiettivo regionale per l’anno [%]
È opportuno evidenziare come gli obiettivi del decreto esposti nella tabella siano da ritenersi vincolanti: l’art. 6 del DM 15 Marzo 2012 prevede infatti che, a decorrere dal 2017, in caso di mancato conseguimento degli obiettivi si avvi la procedura di nomina di un commissario che consegua la quota di energia da fonti rinnovabili idonea a coprire il deficit riscontrato con oneri a carico della regione interessata (trasferimenti statistici di cui al D Lgs n. 28/2011).

L’obiettivo finale potrà essere conseguito promuovendo l’una piuttosto che l’altra fonte rinnovabile indifferente mente, occorre tuttavia osservare che il decreto riporta la ripartizione non vincolante dell’obiettivo nei due contributi: uno legato alle fonti rinnovabili “elettriche” (FER-E) e l’altro legato alle fonti rinnovabili “termiche” (FER-C), in armonia con quanto stabilito dalla Direttiva Europea 2009/28/CE.

A seguito dell’evoluzione del quadro normativo europeo e nazionale la Regione Liguria ha avviato in questi anni una profonda rivisitazione delle proprie norme in materia di fonti rinnovabili ed efficienza energetica degli edifici. In particolare si fa riferimento alla modifica della L.R n. 16/2008 “Disciplina dell’attività edilizia” per quanto attiene alla semplificazione dei titoli autorizzativi relativi agli impianti da fonti rinnovabili e alle “Linee Guida per l’autorizzazione, la valutazione ambientale, la realizzazione e la gestione di impianti per lo sfruttamento delle fonti energetiche rinnovabili” (approvate con DGR n. 1122 del 21/9/2012), che contengono i criteri di ammissibilità territoriale, paesistica ed ambientale ed i contenuti progettuali necessari per lo svolgimento delle prescritte valutazioni ambientali e di livello autorizzativo.

Anche per quanto riguarda il settore dell’efficienza energetica la Regione Liguria ha legislato recependo le Direttive europee in materia ed anticipando i più recenti decreti nazionali volti alla regolamentazione del settore: con la L.R n. 22/2007 “Norme in materia di energia” (aggiornata con L.R n. 23/2012) e relativi regolamenti attuativi la Regione ha aggiornato il quadro normativo e dei regolamenti per quanto attiene il rendimento energetico degli edifici, la

<table>
<thead>
<tr>
<th>anno iniziale di riferimento</th>
<th>2012</th>
<th>2014</th>
<th>2016</th>
<th>2018</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,4</td>
<td>6,8</td>
<td>8,0</td>
<td>9,5</td>
<td>11,4</td>
</tr>
</tbody>
</table>

Tabella 2.2-C: traiettoria degli obiettivi regionali del Burden Sharing
certificazione energetica ed i requisiti minimi ed ha inoltre stabilito disposizioni per il contenimento luminoso (attuate attraverso il Regolamento Regionale n. 5/2009).
La Regione Liguria dispone inoltre di un Piano Energetico Ambientale Regionale approvato dal Consiglio Regionale con DCR n. 43 del 2/12/2003 e successivamente modificato con DCR n. 3 del 3/02/2009, relativamente agli obiettivi per la fonte elica. Con il PEAR 2014-2020 la Regione intende procedere all’aggiornamento del PEAR 2003, sviluppandolo all’interno della “roadmap” tracciata dalle normative europee e nazionali, partendo dalla necessità “di promuovere ulteriormente le energie rinnovabili, dato che il loro uso contribuisce all’attenuazione dei cambiamenti climatici, grazie alla riduzione delle emissioni di gas a effetto serra, allo sviluppo sostenibile, alla sicurezza degli approvvigionamenti e allo sviluppo di un’industria basata sulla conoscenza che crea posti di lavoro, favorisce la crescita economica, stimola la concorrenza e lo sviluppo regionale e rurale.”

2.3. Definizione degli obiettivi all’interno dello Schema di Piano

In tal senso, il Piano ha l’intento di coordinare le linee strategiche in materia di politiche energetiche con quelle riferite allo sviluppo economico, alla ricerca e all’innovazione, alla formazione ed allo sviluppo rurale per quanto attiene la filiera energetica. Se da un lato i contenuti del Piano fanno riferimento ad un quadro di finalità ed obiettivi stabiliti sulla base europea e nazionale (c.d. obiettivi di Burden Sharing), dall’altro infatti il PEAR vuole tener conto di come il raggiungimento di tali obiettivi possa tradursi in opportunità sotto il profilo economico, occupazionale e di salvaguardia e valorizzazione del territorio se opportunamente accompagnato da misure di sostegno alla filiera energetica (dalla ricerca alla formazione) e da una puntuale e ampia attività di comunicazione ed informazione indirizzata ai diversi target di interesse (imprese, associazioni di categoria, enti locali, scuole, centri di ricerca, ecc.).

Sulla base dei principi di sostenibilità ambientale, della normativa e dei documenti di carattere internazionale, comunitario e nazionale, della pianificazione regionale e degli aspetti conoscitivi della realtà regionale, sia in termini ambientali che più propriamente energetici, sono stati definiti i principali macro-obiettivi del PEAR:

A. Burden Sharing
B. Sviluppo economico
C. Comunicazione

I tre macro-obiettivi del Piano si articolano in due obiettivi generali verticali: la diffusione delle fonti rinnovabili (elettriche e termiche) ed il loro insieme in rete di distribuzione “intelligenti” (smartgrid) e la promozione dell’efficienza energetica e su due obiettivi generali orizzontali: il sostegno alla competitività del sistema produttivo regionale e l’informazione e formazione.

MACRO - OBIETTIVI	OBIETTIVI GENERALI
A. Burden Sharing | O.G.1. Efficienza Energetica
B. Sviluppo economico | O.G.2. Fonti rinnovabili (Elettriche e Termiche)
C. Comunicazione | O.G.3. Sostegno alla competitività del sistema produttivo regionale
D. Informazione e formazione

Gli obiettivi generali verticali del Piano sono analizzati sotto il profilo qualitativo e quantitativo sulla base dell’analisi della situazione attuale in Liguria e dei possibili scenari di sviluppo e crescita tenendo conto dei punti di forza, di debolezza, delle opportunità e minacce per ciascuno degli obiettivi specifici individuati.
Macro-Obiettivo “A” - BURDEN SHARING

O.G.1. Efficienza Energetica
O.G.2. Fonti rinnovabili (Elettriche e Termiche)

Il PEAR si propone di favorire due obiettivi generali: lo sviluppo delle fonti rinnovabili e l’efficienza energetica, prestando attenzione alla sostenibilità ambientale. Il Piano costituisce, infatti, un’opportunità in termini di sostenibilità ambientale nel momento in cui si adotta un approccio teso a recepire le istanze provenienti dal territorio stesso, in funzione delle sue caratteristiche e del contesto in cui si colloca. Le esigenze di raggiungimento di obiettivi di Burden Sharing al 2020 delle fonti rinnovabili e di ripresa economica del settore produttivo regionale potrebbero portare ad una riduzione dei Consumi Finali Lordi in linea con le previsioni del Decreto Burden Sharing per la Liguria:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotovoltaico</td>
<td>74</td>
<td>6</td>
<td>250</td>
</tr>
<tr>
<td>Eolico</td>
<td>60</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td>Idroeletrico</td>
<td>84</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>Biogas</td>
<td>20</td>
<td>11</td>
<td>30</td>
</tr>
<tr>
<td>Biomasa</td>
<td>542</td>
<td>56</td>
<td>2000</td>
</tr>
<tr>
<td>Solare Termico</td>
<td>11</td>
<td>0,7</td>
<td>120</td>
</tr>
<tr>
<td>Pompe di calore</td>
<td>1400</td>
<td>53 (*)</td>
<td>1800</td>
</tr>
<tr>
<td>TOTALE</td>
<td>157</td>
<td>412</td>
<td></td>
</tr>
</tbody>
</table>

(*) Calcolato secondo Direttiva Europea fonti rinnovabili (2009/28/CE) e relative linee guida.

Tabella 2..3-A: confronto tra la situazione delle fonti rinnovabili riferita all’anno 2012 e lo scenario di Piano al 2020

Per quanto attiene l’obiettivo generale di incremento dell’efficienza energetica sono state individuate alcune linee di sviluppo relative ai settori residenziale, terziario (pubblico e privato), illuminazione pubblica, imprese e cicli produttivi, effettuando una stima delle loro possibili ricadute in termini di riduzione dei consumi: come è ovvio anche in questo caso le proiezioni effettuate devono tener conto delle variabili al contorno derivanti, ad esempio, da sistemi di incentivazione nazionale e da misure che la Regione Liguria potrà mettere in atto per il sostegno al raggiungimento degli obiettivi finali.

O.G.3. Sostegno alla competitività del sistema produttivo regionale

Il secondo macro-obiettivo del Piano è legato alle opportunità che questo può generare in termini di sviluppo competitivo del territorio, non solo dell’industria manifatturiera, ma anche dei servizi di gestione e manutenzione degli impianti rinnovabili e di ripresa economica dei settori edile ed impiantistico. Il macro-obiettivo B concorre allo sviluppo del settore della “green economy”, sia in termini di rilancio di tecnologie consolidate che di ricerca ed innovazione in campo energetico ed al rilancio dei settori collegati alla “white economy”.

Le esigenze di raggiungimento di obiettivi di Burden Sharing al 2020 da parte della Liguria attiveranno infatti investimenti nei settori delle diverse opzioni tecnologiche previste dal Piano, comportando l’installazione di capacità produttiva aggiuntiva di impianti alimentati da fonti rinnovabili e l’esecuzione di interventi finalizzati all’incremento dell’efficienza energetica nel settore
civile, nelle imprese e nei cicli produttivi e nell'illuminazione pubblica. I volumi di investimento generati potranno essere in parte soddisfatti da produzione impiantistica (beni e servizi) localizzata in Liguria, in una misura che dipenderà sia dalla capacità produttiva disponibile sul territorio, sia alla tenuta competitiva che le imprese liguri saranno in grado di esprimere.

A fronte delle ricadute sul tessuto produttivo regionale in termini di valore aggiunto creato dai nuovi investimenti, vi sarà altresì un effetto sull’occupazione sia in termini di forza produttiva necessaria alla produzione dei beni e dei servizi necessari al raggiungimento degli obiettivi di Burden Sharing regionale, sia di manodopera necessaria per la gestione e la manutenzione degli impianti.

Macro-Obiettivo “C” - COMUNICAZIONE

O.G.4. Informazione e formazione

Al fine di superare l’inierenza del mercato ligure all’innovazione tecnologica nel settore energetico la Regione Liguria metterà in atto una linea di sviluppo trasversale ai settori dell’efficienza energetica e delle fonti rinnovabili specificamente rivolta all’informazione dei cittadini ed alla formazione degli operatori di settore sui temi energetici.

Tra le azioni di accompagnamento previste da tale linea di sviluppo si riportano:

- formazione ed aggiornamento degli operatori del settore impiantistico ed edile sulle tecnologie di razionalizzazione energetica e sfruttamento delle fonti rinnovabili anche attraverso il coinvolgimento di scuole edili e strutture di formazione delle associazioni di categoria;
- accordi di collaborazione con gli ordinari professionali affinché si facciano promotori di programmi formazione continua dei propri iscritti sulle tematiche energetiche, a partire dalle metodologie di diagnosi energetica nel settore civile ed industriale, fino ai metodi di ottimizzazione delle scelte progettuali;
- seminari periodici, in collaborazione con le associazioni di categoria, rivolti ad amministratori di condominio ed imprenditori sugli strumenti normativi e finanziari in grado di favorire la razionalizzazione energetica delle strutture di loro competenza;
- accordi di programma con le associazioni di categoria di artigiani, piccole e medie imprese affinché favoriscano il formazione di consorzi in grado di fornire servizi energetici qualificati e completi, dalla realizzazione delle opere fino all’eventuale finanziamento sotto forma di ESCo;
- formazione degli studenti di scuole di diverso ordine e grado, fino all’alta formazione.

In relazione all'obiettivo generale “informazione e formazione” grande rilievo sarà dato ai processi di partecipazione che vedranno il coinvolgimento dei diversi portatori di interesse, delle scuole, dei centri di ricerca, dei Poli di Ricerca e Innovazione liguri.

Il tema della formazione, anche grazie al coordinamento con le azioni che saranno previste nell’ambito della programmazione 2014-2020 in materia di Green Economy (e già sperimentate nell’ambito del “Piano Giovani” della Regione Liguria, finanziato a valere sul Fondo Sociale Europeo per la programmazione in essere), è da considerarsi un elemento qualificante del Piano sia sotto il profilo della comunicazione diffusa ai cittadini liguri sull’importanza dei temi energetici, sia come strumento di supporto alla crescita economica delle imprese appartenenti alla filiera energetica.

Il tema della formazione in ambito Green Economy è infatti stato individuato dalla Regione Liguria, insieme all’Economia del Mare, tra i due settori su cui è stato centrato il Piano Giovani approvato con DGR n. 1037 del 7 agosto 2012: i Piani di sviluppo settoriale previsti dal suddetto Piano prevedono importanti investimenti per favorire l’azione formativa nel settore della Green Economy, con particolare riferimento alle filiere del bosco e dell’efficienza energetica per le imprese e negli edifici.

Tabella2.3-C: strutturazione del processo di VAS del PEAR

2.4. Percorso partecipativo e sua influenza sulla definizione del PEAR

17.1.1.1.1.1.1 2.4.1. Approccio utilizzato

La partecipazione è stata intesa come parte del processo di VAS congiuntamente alla formazione del PEAR, mirata a fornire un concreto ausilio al processo PEAR/VAS, fornendo decisivi apporti sugli scenari, sugli obiettivi, sulle linee di sviluppo, e sulle valutazioni. Il percorso di VAS diventa così l’occasione per avviare un processo di coinvolgimento del pubblico e degli stakeholder a diversi livelli in merito alla situazione attuale socio-economica ed ambientale e agli scenari possibili da perseguire attraverso un progressivo innalzamento delle performance energetiche.

Il processo di partecipazione è astato articolato in azioni di:

- **consultazione**, al fine diraccogliere i contributi dei principali stakeholder e del pubblico,
- **co-progettazione**, rivolgendosi a particolari categorie di soggetti (ordini professionali, operatori, enti locali, associazioni ambientaliste, associazioni culturali, di volontariato sociale, di categoria, ...), coinvolti e sollecitati ad esprimere idee e suggerimenti in maniera diretta durante tutto il processo di costruzione del PEAR e del processo di VAS, in quanto soggetti attivi sul territorio,
- **informazione e comunicazione**. Attraverso l’informazione (a cui si attribuisce un compito di divulgazione non tecnica dei risultati) e la comunicazione (rivolta a un pubblico meno esperto), per raggiungere la cittadinanza...
o comunque un pubblico non tecnico, informandola costantemente attraverso una serie di strumenti dedicati e di facile comprensione.

Il percorso è stato fondato sui seguenti elementi:

- il processo di VAS si compenetrerà con quello del PEAR, con un processo partecipativo ritenuto fondamentale per il buon esito di quest’ultimo,
- la parte partecipativa è da subito considerata come essenziale, ed è anzi propedeutica a tutte le altre fasi e “trasversale” alle stesse,
- la partecipazione viene utilizzata verticalmente dal basso verso l’alto (”bottom-up”), sfruttando la percezione dei problemi da parte dei vari attori, oltre che viceversa (“top-down”), fornendo così a popolazione e stakeholder elementi di discussioni, scenari, strategie alternative,
- la partecipazione viene usata anche orizzontalmente, ad esempio tra gli uffici/agenzie regionali, ma anche tra enti e associazioni,
- la partecipazione interverrà anche nella fase di monitoraggio, attraverso un “monitoraggio partecipato”, che porterà alla discussione dei risultati dell’evolversi futuro del PEAR.

17.1.1.1.1.1.2 2.4.2. Elementi del processo partecipativo integrato PEAR/VAS

Il percorso partecipativo del PEAR è stato soggetto a due procedure “parallele” con tempi, modalità ed obiettivi propri70 che hanno però agito in modo integrato, riunendo momenti partecipativi e consultivi al fine di migliorare il processo di formazione del PEAR:

- le consultazioni previste dall’iter di pianificazione del PEAR. Oltre a dettare l’iter burocratico per la sua approvazione da parte degli organi competenti, le leggi regionali n. 18/1999 e 32/2012 prevedono che al processo di approvazione di un Piano venga data “adeguata pubblicità” e “massima partecipazione”. La Direttiva 2003/35/CE81, sulla partecipazione del pubblico, prevede (come sancito dalla Convenzione di Aarhus) la necessità di assicurare ai soggetti interessati un ruolo attivo nel processo decisionale, in maniera tale che possano evidenziare le problematiche e le opportunità locali, suggerire nuove idee per lo sviluppo del territorio ed esprimere il proprio punto di vista, garantendo così un controllo dal basso sul processo stesso. A questo fine è previsto lo svolgimento di una “inchiesta pubblica” che si va ad integrare con le fasi di evidenza pubblica necessarie ai sensi della normativa nazionale e regionale sulla VAS.

- gli elementi consultativi e partecipativi propri della procedura di VAS. Nella fase iniziale di stesura del PEAR, con il Rapporto Preliminare di VAS, è stato illustrato il percorso metodologico-procedurale della valutazione ambientale del PEAR e sono stati individuati in prima battuta i soggetti competenti in materia ambientale ed interni all’Amministrazione Regionale, a cui tale percorso è stato sottoposto, e che hanno contribuito allo Scoping. La fase di Scoping, come disciplinata dall’art. 13, commi 1 e 2 del D Lgs n. 152/2006 e ss.mm.ii. e dall’art. 8 della LR n. 32/2012, ha previsto un processo partecipativo che ha coinvolto le autorità con competenze ambientali potenzialmente interessate dall’attuazione del piano, con le quali sono stati condivisi il livello di dettaglio e la portata delle informazioni da produrre e da elaborare, nonché le metodologie per la conduzione dell’analisi ambientale e della valutazione degli impatti.

Le indicazioni fornite dai soggetti consultati sono state prese in considerazione nella valutazione ambientale e nella relativa stesura del Rapporto Ambientale, ai sensi del D Lgs n. 152/2006 e ss.mm.ii. e della LR n. 32/2012, sia per quanto concerne il quadro conoscitivo che per ciò che attiene i criteri valutativi, contribuendo ad arricchire e migliorare l’organizzazione e le scelte del PEAR.

Segue una specifica fase di consultazione pubblica, ai sensi dell’art. 14 del D Lgs n. 152/2006 e ss. mm. ii. e dell’art. 9 della LR n. 32/2012. Questa fase inizia con la pubblicazione sul Bollettino Ufficiale della Regione Liguria (BURL) dell’avviso di avvio della fase di consultazione del Rapporto Ambientale, della Sintesi non tecnica del rapporto stesso e del Piano sottoposto a VAS. Per tale fase è prevista una durata minima di 60 giorni. Gli elaborati da sottoporre a consultazione sono stati depositati, resi consultabili informato cartaceo, presso il Dipartimento Ambiente e pubblicati sul sito www.ambienteinliguria.it.

70 Si veda a tale proposito il Cap. 2.1.2 del PEAR.
81 DIRETTIVA 2003/35/CE del Parlamento Europeo e del Consiglio del 26 maggio 2003 che prevede la partecipazione del pubblico nell’elaborazione di taluni piani e programmi in materia ambientale
Su questa base sono state quindi articolate le seguenti fasi del processo integrato PEAR/VAS di comunicazione e partecipazione coinvolgenti pubblico e portatori d’interesse:

1. **Iniziative partecipative preliminari.** La Regione Liguria ha anticipato il processo di partecipazione del PEAR attraverso alcune iniziative importanti nell’ambito di progetti europei sui temi delle fonti rinnovabili, dell’efficienza energetica e dello sviluppo sostenibile, quali il progetto ALCOTRA Renerfor ed Interreg ClimactRegions (fase preliminare della partecipazione), che hanno consentito di coinvolgere preliminarmente diverse categorie di attori quali amministratori pubblici, tecnici delle imprese e rappresentanti dei consumatori e di movimenti ambientali, sondandone i punti di vista e le aspettative rispetto ai temi trattati. Limitatamente invece al solo studio dell’approccio partecipativo e le sue metodologie applicate alla gestione forestale Regione Liguria ha partecipato alla redazione di linee guida nell’ambito del Progetto Interreg IVC Robinwoodplus.

2. **Consultazioni con i portatori di interesse.** I riscontri di tale fase preliminare sono confluiti nello Schema di PEAR, approvato con DGR n. 1174/2013, che è stato presentato, analizzato e discusso durante le consultazioni attraverso la conferenza di valutazione/scoping.

3. **Fase di Scoping.** Gli incontri delle consultazioni e di scoping, i tavoli tecnici e i riscontri che ne sono seguiti sono stati recepiti nel passaggio all’attuale formulazione del PEAR, sia in termini di rideterminazione degli obiettivi che di definizione delle azioni per l’attuazione delle linee di indirizzo del Piano.

4. **Comunicazione e partecipazione del pubblico.** A completare la progettazione partecipata del PEAR, è stato innescato il processo di comunicazione e partecipazione del pubblico, intesa come società civile nel suo complesso, attraverso la redazione e distribuzione di un questionario volto a rilevare la percezione che un campione di cittadini ha delle linee di indirizzo del nuovo Piano ed in particolare dei temi relativi alle fonti rinnovabili ed all’efficienza energetica, su cui il Piano si fonda. Tale indagine anticipa la fase di Inchiesta pubblica della VAS, in un progetto di partecipazione ampio e strutturato, che si completa con il monitoraggio partecipato.

Le suddette fasi vengono esplicitate nei successivi capitoli.

17.1.1.1.1.1.3 2.4.3 **Iniziative partecipative preliminari, metodologie AHP e CE, Patto dei Sindaci**

Alcune iniziative partecipative sono state condotte prima della predisposizione del PEAR, a fini propedeutici e conoscitivi. Tra queste risultano particolarmente importanti:

- **RENERFOR**

 Nell’ambito del progetto ALCOTRA Renerfor, focalizzato sul miglioramento delle politiche locali relative alle fonti rinnovabili, è stato impostato uno studio specifico finalizzato a raccogliere elementi qualitativi e quantitativi sulle problematiche connesse con le Energie Rinnovabili su scala regionale. Lo studio, realizzato da Liguria Ricerche S.p.A., ha avuto lo scopo di fornire elementi e strumenti utili a supportare le strategie gestionali sulle filiere delle diverse tecnologie applicate alle energie rinnovabili.

 Lo studio era articolato nelle seguenti fasi:

 1. **Mappatura delle imprese presenti in Liguria che operano nelle Energie Rinnovabili (ER).**

 2. **Applicazione dell’Analytic Hierarchy Process (AHP),** una tecnica di analisi multivariata, strutturata per organizzare e analizzare decisioni complesse. Sono stati intervistati esperti, amministratori pubblici, tecnici delle imprese e rappresentanti dei consumatori e di movimenti ambientali. Il tema di queste interviste era inerente la priorità di aspetti ambientali (intrusione visiva, inquinamento acustico ed atmosferico…) ed economici (prezzo dell’energia, occupazione…) che sono rilevanti per delineare gli indirizzi di una politica regionale nel settore delle energie rinnovabili.

 3. **Applicazione del Choice Experiment (CE).** Mediane questa metodologia si può stimare l’importanza di aspetti, per la pubblica opinione, connessi alla presenza nell’ambiente di impianti significativi, come quelli relativi alla generazione di energia a partire da fonti rinnovabili. Agli intervistati vengono presentati di volta in volta due progetti. I due progetti non fanno riferimento direttamente agli impianti impiegati, ma contengono una descrizione dei possibili impatti sia ambientali che economici. Sulla base delle risposte fornite e mediante una metodologia statistica è possibile stimare un’importanza dei vari aspetti, così come avere una valutazione del tasso marginale di sostituzione fra gli stessi (ad esempio quanto si è disposti a pagare di più il prezzo per assumere un impianto meno invasivo visivamente). La metodologia CE presenta dei legami con AHP: mentre AHP si presta ad una esplorazione in profondità con ciascun intervistato, la CE è particolarmente adatta per ampie indagini statistiche. La CE fornisce anche importanti dati quantitativi come i tassi marginali di sostituzione.
Nell’indagine è stato sottoposto al giudizio degli intervistati un questionario costituito da quattro sessioni di scelta, in ciascuna delle quali venivano messi a confronto due scenari che, pur non facendo riferimento alle diverse tecnologie, contenevano una descrizione dei possibili impatti sia ambientali che economici connessi con l’impiego di impianti a fonte rinnovabile. Le variabili scenariali poste alla valutazione dell’intervistato sono state 5: Danni al paesaggio, Danni all’ecosistema, Occupazione, Ricadute economiche per la comunità locale, Prezzo dell’elettricità. Gli scenari sono stati costruiti mediante la combinazione di diversi livelli di valutazione su una scala discreta per le 5 variabili descritte in precedenza. Tra i diversi scenari l’intervistato doveva scegliere quello che riteneva preferibile.

Dall’analisi dei risultati è emerso che sono risultati significativi solo gli effetti legati alle variabili “Danni al paesaggio” e “Occupazione” mentre non lo sono risultati per le altre. E’ stato anche definito a livello esemplificativo la potenziale “disponibilità” a sopportare un aggravio del prezzo della bolletta energetica in cambio di un aumento di un’unità occupata (4,5€/bimestre).

PATTO DEI SINDACI

L’altro fronte sul quale la Regione Liguria ha lavorato costruendo il percorso di avvicinamento al PEAR è quello dell’iniziativa del Patto dei Sindaci. Il Patto dei Sindaci è l’iniziativa volontaria della Commissione Europea con la quale i comuni aderenti si impegnano direttamente a ridurre le proprie emissioni di CO2 di almeno il 20% al 2020 rispetto ad un anno di riferimento. In Liguria sono circa 100 i Comuni aderenti che hanno già preparato il proprio Piano dell’Energia Sostenibile.

In tal senso il Patto dei Sindaci rappresenta un serbatoio di iniziative di straordinaria ricchezza, a cui attingere nella programmazione delle politiche energetiche regionali, con un approccio realmente bottom-up. Il Piano infatti vuole essere sviluppato secondo un approccio misto: decreto Burden Sharing e bottom-up sulla base delle caratteristiche vocazionali del territorio e del suo potenziale effettivo e tenendo conto delle iniziative a livello locale, soprattutto di quelle contenute all’interno dei Piani d’Azione per l’Energia Sostenibile.

Nel corso del 2012 la Regione Liguria, in collaborazione con ARE (ora IRE SpA), ha avviato, nell’ambito del progetto Climact Regions, un percorso finalizzato alla cooperazione tra le diverse Istituzioni per potenziare e diffondere l’iniziativa del Patto dei Sindaci sul territorio regionale. Sono stati realizzati tre incontri durante i quali sono stati affrontati i temi del coordinamento dell’iniziativa sul territorio e della necessità di creare partnership pubblico-private per la realizzazione di progetti sullo sviluppo sostenibile, sulla promozione delle fonti di energia rinnovabili e sulla riduzione dei consumi energetici. Viste le ricadute di questo tipo di iniziative in termini di sviluppo del settore della green economy e della formazione di nuove figure professionali specializzate, la proposta è stata portata avanti in maniera trasversale ai tre dipartimenti regionali coinvolti (Dip. Ambiente, Dip. Sviluppo Economico e Dip. Formazione) e ha portato alla redazione di un Protocollo d’intesa condiviso tra gli Enti Territoriali.

Una fase futura potrà essere la creazione d’un’Associazione Regionale del Patto dei Sindaci che avrà l’obiettivo di facilitare l’incontro e la definizione di azioni sinergiche tra le istituzioni e le imprese per sostenere l’effettiva implementazione della politica del Patto dei Sindaci a livello regionale e locale.

17.1.1.1.1.4 2.4.4 Consultazioni con i portatori di interesse

Durante la fase di costruzione del Piano sono stati avviati una serie di incontri di consultazione con vari soggetti, durante i quali sono stati presentati gli obiettivi generali e le linee di indirizzo del PEAR 2014-2020, oltre al contesto che ha condotto alle scelte di Piano. In particolare le consultazioni hanno coinvolto rappresentanti delle imprese, dei sindacati, delle istituzioni (ANCi, URPL, Porti) e delle associazioni ambientaliste nelle giornate del 23 e 29 ottobre 2013 e sono state finalizzate ad acquisire pareri in merito agli indirizzi strategici del Piano. Oltre a raccogliere i pareri espressi durante gli incontri operativi, sono stati richiesti eventuali contributi scritti, con la disponibilità ad ulteriori approfondimenti ed incontri tecnici su temi specifici del PEAR. In particolare in data 22 novembre 2013 si è tenuto un incontro tecnico presso Confindustria Genova, al fine di discutere con gli associati gli aspetti tecnici legati alle opzioni tecnologiche individuate nel PEAR.

Si riportano i temi più rilevanti che presentano attinenze con il PEAR 2014-2020, per i quali sono pervenute osservazioni e proposte:
Necessità di proseguire gli sforzi per **semplificare** sotto il profilo amministrativo gli **iter autorizzativi** per la realizzazione degli impianti alimentati da fonti rinnovabili;

Valenza degli obiettivi del PEAR per lo **sviluppo di specifici settori imprenditoriali**, quali impiantistica ed edilizia;

Richiesta di progettare **strumenti finanziari** dedicati a categorie di imprese operanti nei settori di riferimento del Piano per garantire un elevato livello di competitività;

Importanza di mettere in atto iniziative multiforme al fine di promuovere lo **sviluppo della biomassa**;

Importanza di indirizzare gli obiettivi del PEAR 2014-2020 anche al **sostegno occupazionale** nei settori di riferimento, garantendo un’efficace integrazione tra fondi FESR ed FSE;

Necessità di **sostenere progetti di Ricerca, Sviluppo ed Innovazione** nel settore energetico al fine di creare posti di lavoro qualificati;

Opportunità di inserire nei PEAR i Porti come ambito in grado di contribuire, attraverso i propri strumenti di pianificazione ed iniziative anche in campo “Smart Grid”, al raggiungimento degli obiettivi del PEAR;

Esistenza e prospettive per **iniziative per lo sfruttamento delle fonti rinnovabili presso serre**;

Opportunità di valutare la possibilità di **incrementare l'obiettivo sull'efficienza energetica** del PEAR 2014-2020;

Prioritariamente sono emerse la necessità di **approfondire maggiormente alcune sezioni dello Schema di Piano**, in particolare in relazione al quadro conoscitivo e di approfondire la progettazione del processo di partecipazione e di monitoraggio.

17.1.1.1.1.1.5 2.4.5. Fase di Scoping

La fase di Scoping della VAS è stata condotta, ai sensi di quanto previsto dalla normativa nazionale e regionale, attraverso il **coinvolgimento dei soggetti competenti in materia ambientale e di quelli interni all’Amministrazione Regionale** indicati nella Relazione Istruttoria n. 47.

Il procedimento, avviato in data 9/10/2013, ha visto l’attivazione della Consultazione sulla base dello Schema di Piano e del Rapporto Preliminare adottato dalla Giunta Regionale con DGR n. 1174 del 25/09/2013, con il coinvolgimento di:

- Province
- Enti Parco
- ARPAL
- ASL
- Soprintendenze per i beni culturali, architettonici e paesaggistici
- Regioni limitrofe
- Autorità Portuali
- Autorità di Bacino
- Settore Urbanistica e Tutela del Paesaggio
- Settore Assetto del Territorio
- Settore Progetti e Programmi per la tutela e valorizzazione AMBIENTALE
- Settore Politiche Agricole e della Pesca
- Settore ecosistema costiero e ciclo delle acque

oltre al Dipartimento Ambiente stesso.

Nel seguito vengono evidenziati gli elementi più rilevanti emersi a seguito dell’incontro istruttorio tenutosi in data 21/11/2013 e delle osservazioni ricevute, per cui sono state sviluppate parti specifiche di Piano, per il dettaglio delle osservazioni si rimanda alla documentazione della istruttoria di VAS pubblicata sul sito della Regione Liguria (http://www.cartografiarl.regione.liguria.it/SiraVIAVASPub/FruizioneVAS.asp).

Prioritariamente sono emerse la necessità di **approfondire maggiormente alcune sezioni dello Schema di Piano**, in particolare in relazione al quadro conoscitivo e di approfondire la progettazione del processo di partecipazione e di monitoraggio.
In relazione agli obiettivi tecnologici è stata evidenziata l’esigenza di effettuazione una rivisitazione dell’ipotesi di revisione delle Aree Non Idonee definita dall’Argomento di Giunta del 9 marzo 2012 che prevedeva il possibile l’utilizzo di aree quali SIC, Aree protette, aree in vincolo paesaggistico diretto, attualmente non utilizzabili, eliminando vincoli diversi da quelli previsti dalla legislazione nazionale e comunitaria. Oltre a ciò si segnalava la necessità di rafforzare il coordinamento con gli altri strumenti di pianificazione regionale, quali il Piano Regionale di Gestione dei Rifiuti e con gli strumenti di pianificazione locale, evidenziando il ruolo di Comuni e Territori per il raggiungimento degli obiettivi.

Le osservazioni sono state recepite nell’elaborazione del PEAR, attraverso l’approfondimento delle relative sezioni, l’introduzione di nuove parti ed il recepimento all’interno del PEAR degli esiti degli altri strumenti di pianificazione di altri soggetti/dipartimenti.

A titolo esemplificativo delle modifiche effettuate, sono state introdotte nella nuova versione del PEAR capitoli dedicati alle centrali termoelettriche ed alle azioni di efficienza energetica da parte degli Enti Pubblici, sono state richiamate l’iniziativa del Patto dei Sindaci e le indicazioni emerse dal Piano Rifiuti, è stato aggiornato ed approfondito il Bilancio Energetico Regionale, anche mediante confronti pluriennali ed è stato maggiormente dettagliata la sezione relativa all’efficienza energetica, le cui ricadute positive in termini di qualità dell’aria verranno quantificate in termini di Energetico Regionale, anche mediante confronti pluriennali ed è stato maggiormente dettagliata la sezione relativa all’efficienza energetica.

Per quanto riguarda la fonte eolica, la Regione Liguria, congiuntamente al presente Piano, provvede alla revisione delle Aree Non Idonee, ridefinendo la mappatura per la collocazione degli impianti eolici di tipo industriale escludendo:

- aree di nidificazione e di caccia di rapaci o altri uccelli rari che utilizzano pareti rocciose;
- areali di chirotteri.

17.1.1.1.1.1.6 2.4.6. Comunicazione/partecipazione di pubblico e stakeholder

Nel corso del 2014 è stato avviato il processo di partecipazione rivolto ai cittadini, anticipando la fase di Inchiesta Pubblica prevista dalla Valutazione Ambientale Strategica del Piano Energetico. La partecipazione di pubblico e stakeholder è ritenuto un elemento essenziale: infatti alla comunicazione, informazione ed informazione è indirizzato uno dei tre Macro-Obiettivi del PEAR. Il processo partecipativo pubblico prevede quattro stadi diversi (di cui i primi due già attuati), che accompagnano il processo di formazione del Piano e la sua implementazione:

- **Fase preliminare:**
 - informazione. Le politiche energetiche della Regione al 2020, gli obiettivi generali e le linee di indirizzo sono state illustrate in occasione di tre eventi pubblici (incontro del Progetto Europeo Rescue; incontro del Progetto Europeo Marie, durante la settimana di Genova Smart Week; convegno sull’Edilizia Sostenibile di Chiavari; per metodologia e risultati si veda il Cap.3.2.7 del Rapporto Ambientale).
 - percezione. Attraverso un questionario volto a rilevare la percezione che un campione di cittadini ha delle linee di indirizzo del nuovo Piano ed in particolare dei temi relativi alle fonti rinnovabili ed all’efficienza energetica, su cui il Piano si fonda (per metodologia e risultati si veda il Cap.3.2.7 del Rapporto Ambientale).

- **Fase attuativa:**
 - coinvolgimento attuativo. Partendo dal presupposto che la popolazione sarà determinante per l’attuazione del PEAR, verranno realizzate azioni a livello informativo-comunicativo, che saranno opportunamente monitorate sia in termini di iniziative effettuate che di cittadini coinvolti (per i dettagli si rimanda alla descrizione del macro obiettivo di Piano C “Comunicazione”).
 - monitoraggio partecipato. Basato sulla percezione dell’attuazione del Piano, della sua efficienza e delle sue ricadute, sarà possibile impostare azioni di feed-back per la eventuale ricalibrazione del Piano.

17.1.1.1.1.7 2.4.7. Analisi percettiva di supporto al processo (Q Metodology)

Nell’ambito della procedura di VAS la consultazione pubblica (prevista dalla LR n° 32 del 2012, art. 9), è stata anticipata mediante un’indagine sul territorio regionale rivolta alla cittadinanza e finalizzata alla rilevazione del grado di consapevolezza e di condivisione rispetto agli orientamenti programmatici della politica energetica regionale contenuti nel PEAR 2014-2020.

Gli investimenti in energia da fonti rinnovabili possono presentare infatti esternalità anche rilevanti in termini di costi e benefici che ricadono sulla collettività e che devono essere presi in considerazione dal punto di vista dell’efficienza dell’investimento. Poiché la gran parte di questi costi e benefici è associata ad
impatti di tipo ambientale (qualità del paesaggio, flora e fauna, inquinamento) e/o sociale (occupazione, prezzo in bolletta, caratteristiche competitive del territorio), il grado di consapevolezza e di condivisione da parte della popolazione locale ha a che fare anche con la percezione di valori, di tipo identitario e culturale, che non transitano necessariamente attraverso il mercato, intesi come quei valori rappresentativi della sensibilità rispetto ad alcuni principali elementi di identificazione ambientale sociale e culturale del territorio da parte dei soggetti che lo vivono e che sono portatori di interessi a vario titolo.

Dal punto di vista metodologico, la rilevazione e la successiva analisi sono state basate sull’approccio della **Q methodology** (Stephenson, 1953), solitamente associato alla rilevazione di fenomeni soggettivi, e che include una serie di condizioni fondamentali che possono essere rilevate e valutate quantitativamente mediante la raccoglia di dati, in questo caso di un campione a sua volta indirizzato sulla popolazione locale.

La rilevazione avviene attraverso interviste a un campione di famiglie e ad altri soggetti tra la popolazione locale. Ad ogni intervistato è stata condotta una serie di giudizi sul tema in agenda e gli viene chiesto di ordinare ciascuno di essi secondo una scala discreta che ai suoi estremi presenta rispettivamente grande accordo/disaccordo. I giudizi sono opinioni (non fatti) e ordinari dal proprio punto vista fa emergere la soggettività, ponendo quindi l’attenzione sulla qualità più che sulla quantità.

Il contesto in cui viene solitamente utilizzata la Q methodolgy è quello della democrazia partecipativa (come il dibattito pubblico) sia in assenza che in assenza di procedure di deliberazione (Niemeyer, 2004; Baechtiger et al., 2011), con l’obiettivo di ridurre progressivamente il numero dei punti di vista sull’argomento oggetto della deliberazione, fino a giungere, per progressiva esclusione, ad identificare i punti di vista su cui si concentra il maggior consenso (le delibere cioè che, se poste in votazione, otterrebbero la maggioranza dei voti). In tal senso si tratta di una metodologia molto adatta a supportare il processo di monitoraggio partecipato previsto nel PEAR.

L’indagine è stata condotta nel mese di Agosto 2014 ed ha consentito di raccogliere 849 questionari validi. Le interviste sono state raccolte su tutto il territorio regionale, con una buona copertura dei capoluoghi di provincia, dei Comuni costieri e dell’entroterra.

Nella Figura 2.4-A è riportata la distribuzione delle risposte alle 24 domande del questionario: il colore blu indica accordo con l’affermazione, il colore ocra il disaccordo, mentre il verde rappresenta la situazione di indifferenza. Nella figura presentata una serie di caratteristiche di rilevamento. In primo luogo, è evidente il sostanziale e generalizzato accordo degli intervistati con le affermazioni proposte, alla sua volta indice di interesse (pochi sono in generale coloro che si dichiarano indifferenti) verso le tematiche energetiche ed ambientali e di attenzione verso le politiche orientate al risparmio energetico. Questa attitudine positiva è maggiormente evidente nelle questioni di carattere generale, mentre diminuisce quando si fa riferimento a specifici interventi o tecnologie da mettere in atto per ridurre i consumi energetici. Si osserva infatti che in relazione ad alcune tecnologie aumenta il grado di incertezza dei rispondenti (in alcuni casi più del 20% dei rispondenti si dichiara indifferente) probabilmente a causa della scarsa conoscenza delle tecnologie stesse. La mancanza di informazione in relazione alle questioni energetiche ed alle problematiche ambientali, e la necessità di conoscenza e formazione emerge in modo evidente, con il 77% circa degli intervistati che ritengono inadeguato il grado di informazione dei cittadini, e con il 95% del campione si dichiara favorevole ad investimenti atti ad accrescere il grado di consapevolezza della popolazione. Emerge una lieve preferenza verso gli aspetti di carattere ambientale, mentre le opportunità di sviluppo economico legate alle politiche energetiche sembrano essere, nel giudizio dei rispondenti, meno rilevanti ai fini della formulazione di una politica energetica. Tuttavia, l’attitudine prevalente corrisponde ad un atteggiamento di tipo win-win, nel quale le due dimensioni non sono percepite come contrapposte.

E’ da notare, però, che la domanda che raccoglie il maggior accordo (96%) tra quelle relative a specifici interventi o politiche è quella legata all’applicazione di incentivi economici (sgravi fiscali, vantaggio nelle compravendite e nel costo in bolletta) per i privati. Da un lato, infatti, questa è la politica energetica che negli ultimi anni ha avuto maggior visibilità e quindi quella maggiormente conosciuta (si veda quanto detto in precedenza circa la mancanza di

62 Indicando con n il numero di giudizi ed m il numero delle persone intervistate la risposta di ciascuna persona consiste nell’insieme delle opinioni emesse sugli m giudizi. Ciascun individuo può essere quindi rappresentato in un piano a m dimensioni. L’insieme delle risposte delle n persone popola, quindi, questo spazio nxm dimensionale.

Sull’insieme delle n interviste, trattate nel modo analitico sopra descritto può essere applicata una metodologia statistica (ad esempio analisi dei fattori) che fa emergere alcuni orientamenti tipici che spiegano, secondo un grado di similarità soddisfacente, le opinioni espresse.
informazione); sempre per lo stesso motivo probabilmente i rispondenti non sono in grado di valutare adeguatamente il ritorno economico di un investimento (per esempio di efficientamento energetico) messo in atto da privati. Un’ulteriore spinta a favore degli incentivi può essere imputabile alla non facile congiuntura economica, che rende difficile pianificare e mettere in atto investimenti con un ritorno di medio periodo in assenza di politiche di supporto economico. Sotto un altro aspetto, questo evidenzia anche la mancanza di consapevolezza del nesso tra affermazioni di principio a favore della tutela dell’ambiente ed oneri derivanti dalla loro declinazione in interventi ed azioni, unita alla scarsa disponibilità ad assumersene i costi. Questo è un atteggiamento che si osserva diffusamente in relazione a tutte le politiche economiche e fiscali, ma che, nel contesto ambientale, ha connotazioni più marcate e specifiche, di nuovo imputabile ad aspetti di informazione e di educazione.

Un ultimo punto di rilievo è legato alla forte domanda di partecipazione, che emerge sia in relazione ai processi decisionali, sia in relazione agli investimenti in conoscenza.

Per quanto riguarda le due categorie di interventi proposte, energie rinnovabili ed efficientamento energetico, di nuovo vengono percepite come soluzioni non alternative, ma sovrapponibili.

Tra le tecnologie per la produzione di energia, le biomasse sono percepite positivamente, sia in relazione alle esternalità positive (circa il 65% dei rispondenti ritiene che abbiano ricadute positive in termini di tutela e conservazione del territorio), sia in relazione alle possibili esternalità negative (percepite come tali da meno del 40% dei rispondenti); il 48% del campione ritiene inoltre che esse possano costituire parte di un mix di soluzioni comprendente, con un ruolo significativo, anche energia solare ed energia eolica.

Anche per le diverse modalità di miglioramento dell’efficienza energetica, pur in presenza di un sostanziale consenso, emerge una scarsa conoscenza degli aspetti tecnici e delle potenzialità dei diversi interventi che porta ad una sottovalutazione dei possibili benefici da essi derivanti.

Figura 2.4-A: distribuzione delle risposte alle domande del questionario

I gruppi si connotano a prescindere dalle caratteristiche socio-demografiche individuali, a indicazione del fatto che l’interesse verso le tematiche energetiche e le loro ricadute sia ambientali che economiche attraversa tutti gli strati della popolazione in modo sostanzialmente indifferenziato.
Per concludere, emerge un consenso potenziale di dimensioni molto significative, che dovrebbe però essere opportunamente orientato verso le politiche energetiche di interesse mediante campagne di formazione/informazione e mediante processi di partecipazione alla formazione delle decisioni.

2.5. Definizione delle Linee di Sviluppo dello Schema del PEAR (Fase di Scoping)

La partecipazione e il coinvolgimento visti precedentemente hanno permesso sia di definire la versione preliminare del PEAR (Schema di PEAR) sottoposta alla fase di “Scoping” della VAS, che di apportare cambiamenti a seguito degli esiti di detta fase. Gli obiettivi del PEAR sono stati individuati sulla base delle opportunità e dei vincoli imposti dal quadro normativo di riferimento e vengono declinati in linee di sviluppo che tengano conto del contesto d’azione del Piano con particolare riferimento alle specificità (ambientali e paesaggistiche) ed alle vocazioni (industriali, tecnologiche e turistiche) del territorio ligure.

In particolare, i tre macro-obiettivi del Piano (raggiungimento degli obiettivi previsti dal Burden Sharing, sviluppo economico e comunicazione) si articolano:

- **DUE OBIETTIVI GENERALI VERTICALI**:
 1. La diffusione delle fonti rinnovabili (elettriche e termiche)
 2. Il loro inserimento in reti di distribuzione “intelligenti” (smartgrid) e la promozione dell’efficienza energetica

- **DUE OBIETTIVI GENERALI ORIZZONTALI**:
 1. Il sostegno alla competitività del sistema produttivo regionale
 2. L’informazione dei cittadini e formazione degli operatori sui temi energetici, a loro volta declinati secondo linee di sviluppo e azioni coordinate con la programmazione dei fondi POR FESR 2014 - 2020.

Gli obiettivi generali verticali del Piano sono stati analizzati sotto il profilo qualitativo e quantitativo sulla base dell’analisi della situazione attuale in Liguria e dei possibili scenari di sviluppo e crescita tenendo conto dei punti di forza, di debolezza, delle opportunità e minacce per ciascuno degli obiettivi specifici individuati.

Per l’individuazione degli obiettivi generali e delle Linee di Sviluppo relativamente alla produzione di energia da fonti rinnovabili si è proceduto attraverso un’analisi tecnica articolata per tipologia di fonte rinnovabile (fotovoltaico, biomassa, eolico, ecc.), valutando lo stato attuale delle installazioni, criticità emerse nel corso dell’attuazione del precedente PEAR e condizioni al contorno che possono limitare o rappresentare opportunità di sviluppo della fonte stessa.

Per quanto attiene l’obiettivo generale di incremento dell’efficienza energetica sono state individuate alcune linee di sviluppo relative ai settori residenziale, terziario, illuminazione pubblica, imprese e cicli produttivi, effettuando una stima delle loro possibili ricadute in termini di riduzione dei consumi: come è ovvio anche in questo caso le proiezioni effettuate devono tener conto delle variabili al contorno derivanti, ad esempio, da sistemi di incentivazione nazionali e regionali.

Per quanto attiene l’obiettivo generale dell’incremento dell’efficienza energetica sono state individuate alcune linee di sviluppo relative ai settori residenziale, terziario, illuminazione pubblica, imprese e cicli produttivi, effettuando una stima delle loro possibili ricadute in termini di riduzione dei consumi: come è ovvio anche in questo caso le proiezioni effettuate devono tener conto delle variabili al contorno derivanti, ad esempio, da sistemi di incentivazione nazionali e regionali.

In relazione all’obiettivo generale “informazione e formazione” grande rilievo si è dato ai processi di partecipazione che vedranno il coinvolgimento dei diversi portatori di interesse, delle scuole, dei centri di ricerca, dei Poli di Ricerca e Innovazione liguri. Il tema della formazione, anche grazie al coordinamento con le azioni che saranno previste nell’ambito della programmazione 2014-2020 in materia di Green Economy (e già sperimentate nell’ambito del “Piano Giovani” della Regione Liguria, finanziato a valere sul Fondo Sociale Europeo per la programmazione in essere), è da considerarsi un elemento qualificante del Piano sia sotto il profilo della comunicazione diffusa ai cittadini liguri sull’importanza dei temi energetici, che come strumento di supporto alla crescita economica delle imprese appartenenti alla filiera energetica.

Per la sintesi dei **Macro-Obiettivi, Obiettivi Generali e Linee di Sviluppo** si veda la Tabella 2.5-A, strutturata, anche ai fini della valutazione della coerenza interna, secondo quanto previsto dal “Modello di riferimento per l’elaborazione del Rapporto Ambientale ai sensi della LR n. 32/2012” della Regione Liguria.”

<table>
<thead>
<tr>
<th>MACRO - OBIETTIVI</th>
<th>OBIETTIVI GENERALI</th>
<th>LINEE DI SVILUPPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Burden Sharing</td>
<td>O.G.1. Efficienza Energetica</td>
<td>EE.1. Ridurre i consumi energetici del settore residenziale</td>
</tr>
<tr>
<td>(conseguimento dell'obiettivo del</td>
<td>O.G.2. Fonti rinnovabili</td>
<td>FER.1. Promuovere la realizzazione di impianti fotovoltaici su edifici ed in aree industriali o degradate dal punto di vista ambientale</td>
</tr>
</tbody>
</table>
Per quanto riguarda il macro-obbiettivo A occorre effettuare qualche considerazione di merito delineando gli scenari tecnologici sottesi alle linee di indirizzo. In particolare si riporta nel seguente una sintesi dello scenario complessivo di Piano ai fini del conseguimento dell’obbiettivo del DM 15 marzo 2012.

Gli obiettivi di sviluppo delle fonti rinnovabili consentono di delineare uno scenario di consumi finali da fonti rinnovabili al 2020 di circa 412 ktep al 2020. Per la sintesi degli obiettivi specifici per fonte si veda lo schema riassuntivo seguente (Tabella 2.5-B):

Tabella 2.5-B: confronto tra la situazione delle fonti rinnovabili riferita all’anno 2012 e lo scenario di Piano al 2020

<table>
<thead>
<tr>
<th>TIPOLOGIA DI FONTE RINNOVABILE (FER-E e FER-C)</th>
<th>Situazione Attuale</th>
<th>Scenario di Piano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotovoltaico</td>
<td>74</td>
<td>6</td>
</tr>
<tr>
<td>Eolico</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>Idroelettrico</td>
<td>84</td>
<td>20</td>
</tr>
<tr>
<td>Biogas</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>Biomassa</td>
<td>542</td>
<td>56</td>
</tr>
<tr>
<td>Solare Termico</td>
<td>11</td>
<td>0,7</td>
</tr>
<tr>
<td>Pompe di calore</td>
<td>1400</td>
<td>53 (*)</td>
</tr>
<tr>
<td>TOTALE</td>
<td>157</td>
<td></td>
</tr>
</tbody>
</table>

Parallelamente la Regione intende agire al fine di favorire l’efficienza energetica, con particolare riferimento ai settori civile (pubblico e privato), dell’illuminazione pubblica e delle imprese e dei cicli.
produttivi, capitalizzando e potenziando mediante opportune politiche di settore i risultati delle politiche avviate nel corso degli ultimi anni. DA QUI

Al fine di verificare gli impatti delle politiche di efficienza energetica del presente Piano si procede a studiare gli scenari di riferimento riportati del DM 15 Marzo 2012: la Tabella 8 in Allegato 1 del Decreto riporta la traiettoria dei Consumi Finali Lordi (CFL) regionali a partire dall’anno iniziale di riferimento fino al 2020(Tabella 2.5-C). I valori regionali di CFL per l’anno di riferimento sono stati calcolati aggregando le tipologie di consumi regionali relativi agli anni più recenti (Allegato 2, Par 4 - DM 15 Marzo 2012):

- CFL – consumi elettrici: consumo finale netto regionale (Fonte: Terna) come media nel periodo 2006-2010 sommato a perdite di rete e consumi ausiliari di centrale (ripartiti tra le Regioni in base ai consumi);

I CFL regionali al 2020 sono stati invece ottenuti a partire dallo scenario efficiente del Piano di Azione Nazionale (PAN) per le Energie Rinnovabili, utilizzando fattori di ripartizione basati sui consumi storici e le traiettorie tra l’anno di riferimento ed il 2020 sono state calcolate prevedendo una crescita lineare.

<table>
<thead>
<tr>
<th>Regioni</th>
<th>Anno iniziale riferimento</th>
<th>2012</th>
<th>2014</th>
<th>2016</th>
<th>2018</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abruzzo</td>
<td>2,838</td>
<td>2,741</td>
<td>2,746</td>
<td>2,752</td>
<td>2,757</td>
<td>2,762</td>
</tr>
<tr>
<td>Basilicata</td>
<td>1,153</td>
<td>1,115</td>
<td>1,118</td>
<td>1,120</td>
<td>1,123</td>
<td>1,126</td>
</tr>
<tr>
<td>Calabria</td>
<td>2,519</td>
<td>2,435</td>
<td>2,441</td>
<td>2,447</td>
<td>2,452</td>
<td>2,458</td>
</tr>
<tr>
<td>Campania</td>
<td>6,794</td>
<td>6,670</td>
<td>6,586</td>
<td>6,602</td>
<td>6,618</td>
<td>6,634</td>
</tr>
<tr>
<td>Emilia Romagna</td>
<td>14,308</td>
<td>13,793</td>
<td>13,806</td>
<td>13,818</td>
<td>13,830</td>
<td>13,841</td>
</tr>
<tr>
<td>Friuli V. Giulia</td>
<td>3,561</td>
<td>3,447</td>
<td>3,457</td>
<td>3,467</td>
<td>3,477</td>
<td>3,487</td>
</tr>
<tr>
<td>Lazio</td>
<td>10,268</td>
<td>9,918</td>
<td>9,937</td>
<td>9,955</td>
<td>9,974</td>
<td>9,992</td>
</tr>
<tr>
<td>Liguria</td>
<td>3,005</td>
<td>2,903</td>
<td>2,909</td>
<td>2,915</td>
<td>2,921</td>
<td>2,927</td>
</tr>
<tr>
<td>Lombardia</td>
<td>26,485</td>
<td>25,593</td>
<td>25,647</td>
<td>25,701</td>
<td>25,755</td>
<td>25,810</td>
</tr>
<tr>
<td>Marche</td>
<td>3,622</td>
<td>3,495</td>
<td>3,500</td>
<td>3,504</td>
<td>3,509</td>
<td>3,513</td>
</tr>
<tr>
<td>Molise</td>
<td>644</td>
<td>622</td>
<td>624</td>
<td>625</td>
<td>626</td>
<td>628</td>
</tr>
<tr>
<td>Piemonte</td>
<td>11,771</td>
<td>11,364</td>
<td>11,382</td>
<td>11,400</td>
<td>11,418</td>
<td>11,436</td>
</tr>
<tr>
<td>Puglia</td>
<td>9,837</td>
<td>9,488</td>
<td>9,499</td>
<td>9,609</td>
<td>9,620</td>
<td>9,531</td>
</tr>
<tr>
<td>Sardegna</td>
<td>3,803</td>
<td>3,688</td>
<td>3,703</td>
<td>3,717</td>
<td>3,732</td>
<td>3,746</td>
</tr>
<tr>
<td>Sicilia</td>
<td>7,716</td>
<td>7,467</td>
<td>7,488</td>
<td>7,509</td>
<td>7,530</td>
<td>7,551</td>
</tr>
<tr>
<td>TAA-Bolzano</td>
<td>1,361</td>
<td>1,314</td>
<td>1,316</td>
<td>1,319</td>
<td>1,321</td>
<td>1,323</td>
</tr>
<tr>
<td>TAA-Trento</td>
<td>1,419</td>
<td>1,370</td>
<td>1,372</td>
<td>1,375</td>
<td>1,377</td>
<td>1,379</td>
</tr>
<tr>
<td>Toscana</td>
<td>9,689</td>
<td>9,351</td>
<td>9,365</td>
<td>9,378</td>
<td>9,392</td>
<td>9,405</td>
</tr>
<tr>
<td>Umbria</td>
<td>2,670</td>
<td>2,677</td>
<td>2,681</td>
<td>2,685</td>
<td>2,689</td>
<td>2,693</td>
</tr>
<tr>
<td>Valle d’Aosta</td>
<td>568</td>
<td>648</td>
<td>648</td>
<td>649</td>
<td>649</td>
<td>560</td>
</tr>
<tr>
<td>Veneto</td>
<td>12,679</td>
<td>12,260</td>
<td>12,275</td>
<td>12,300</td>
<td>12,325</td>
<td>12,349</td>
</tr>
<tr>
<td>Totale</td>
<td>136,712</td>
<td>132,049</td>
<td>132,298</td>
<td>132,646</td>
<td>132,794</td>
<td>133,042</td>
</tr>
</tbody>
</table>

Tabella 2.5-C: Traiettoria dei Consumi Finali Lordi Regionali [ktep]. DM 15 Marzo 2012.

La Tabella 2.5-C, come precisato dal Decreto, assume che gli effetti delle azioni di efficienza energetica previste dal PAN sugli usi finali siano distribuiti sulle regioni in proporzione ai loro consumi storici, lasciando libere le regioni di sviluppare proprie politiche a favore dell’efficienza, i cui risultati troveranno riscontro nella consuntivazione dei propri consumi finali.

Al fine di prevenire nelle stime eventuali sovrapposizioni di effetti dovuti alle politiche nazionali e a quelle regionali, nel presente Piano si è deciso di effettuare un’analisi degli impatti delle azioni di efficienza energetica a partire dallo scenario di riferimento “Business as usual” (BAU) del PAN (anziché dallo scenario
di “efficienza energetica supplementare” indicato nel Decreto) applicandovi quindi gli effetti dovuti all’attuazione sul territorio regionale delle linee strategiche in materia di efficienza energetica previsti nel presente Piano al fine del calcolo del CFL regionale al 2020.

Considerato che lo scenario dei CFL al 2020 in Tabella 2.5 -C è stato costruito, come sopra esposto, ripartendo il CFL nazionale di 133.042 ktep previsto nello scenario efficiente del Piano sulla base dei consumi storici delle Regioni, si è cercato di ricostruire lo scenario energetico regionale in condizioni BAU a partire dallo scenario di riferimento del PAN applicando gli stessi criteri di ripartizione del DM 15 Marzo 2012 al CFL di 145.566 ktep.

<table>
<thead>
<tr>
<th>Riscaldamento e raffrescamento</th>
<th>Scenario di riferimento 2020 [ktep]</th>
<th>Efficienza Energetica Supplementare 2020 [ktep]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elettricità</td>
<td>66.499</td>
<td>61.185</td>
</tr>
<tr>
<td>Trasporti</td>
<td>35.034</td>
<td>32.227</td>
</tr>
<tr>
<td>Consumo Finale Lordo di Energia</td>
<td>145.566</td>
<td>133.042</td>
</tr>
</tbody>
</table>

Fonte: PAN.

Dai calcoli effettuati risulta che in assenza di interventi di efficienza energetica la proiezione dei CFL della Liguria al 2020 ammonterebbe a 3.203 ktep. L’attuazione delle strategie regionali in materia di efficienza energetica consentirebbero una riduzione dei consumi finali lordi pari a circa 276 ktep (trascurando le variazioni di perdite di rete e autoconsumi di centrale), che porterebbero ad un CFL di circa 2.927 ktep, in linea con le previsioni del Decreto Burden Sharing.

<table>
<thead>
<tr>
<th>ITALIA</th>
<th>LIGURIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumi elettrici</td>
<td>35.034</td>
</tr>
<tr>
<td>Consumi non elettrici</td>
<td>105.043</td>
</tr>
<tr>
<td>CFL</td>
<td>145.566</td>
</tr>
</tbody>
</table>

Tabella 2.5-E CFL nazionali e regionali nello scenario di riferimento e di efficienza energetica supplementare [ktep]-2020. Elaborazioni su PAN

Sulla base degli esiti degli scenari di cui alla Tabella 2.5-B e alla Tabella 2.5-E risulta pertanto, in conformità con quanto previsto dal DM 15/3/2012:

<table>
<thead>
<tr>
<th>Obiettivi di Piano al 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo Finale Lordo</td>
</tr>
<tr>
<td>Consumi Finali da Fonti Rinnovabili</td>
</tr>
<tr>
<td>% Decreto Burden Sharing</td>
</tr>
</tbody>
</table>

Tabella 2.5-F Obiettivo generale dello Schema di PEAR al 2020.

2.6.Indicazioni pervenute e modifiche susseguenti la fase di Scoping

Al fine di recepire le indicazioni emerse in fase di consultazione relativamente alla necessità di rafforzare il ruolo del settore pubblico e di tenere in considerazione le tecnologie della co/trigenerazione e teleriscaldamento/teleraffrescamento, rispetto al modello organizzativo presentato nello Schema di PEAR:
1. sono state dettagliate le azioni regionali,
2. sono state introdotte le seguenti due nuove linee di indirizzo:

EE.3. Incrementare l’efficienza energetica del patrimonio edilizio pubblico e dell’illuminazione pubblica
EE.4. Favorire l’installazione di sistemi tecnologici avanzati quali impianti di cogenerazione e trigenerazione, teleriscaldamento e teleraffrescamento

Nel passaggio dallo “Schema di PEAR” alla “Proposta di PEAR 2014-2020” si sono inoltre rese disponibili ulteriori informazioni a consolidamento del quadro conoscitivo regionale. In particolare il Bilancio Energetico Regionale 2011, prodotto dal Sistema Informativo Regionale Ambientale, ha consentito una stima dei Consumi Finali Lordi Regionali con approccio bottom-up, a partire dalla quale è stato prodotto un nuovo scenario dei consumi al 2020 in condizioni di “efficienza energetica” pari a 2.640 ktep (Tabella 2.6-B). Ciò ha permesso un abbassamento dell’obiettivo complessivo relativo alle fonti rinnovabili di energia da 412 ktep (dello Schema di PEAR) a 374 ktep (fissato l’obiettivo del 14,1% stabilito dal Burden Sharing) e contestualmente una ricalibrazione degli obiettivi per fonte che tenesse conto delle osservazioni raccolte durante le consultazioni (abbassamento dell’obiettivo per la fonte eolica e per la biomassa ed innalzamento per le pompe di calore) come si evince dalla tabella seguente.

<table>
<thead>
<tr>
<th>TIPOLOGIA DI FONTE RINNOVABILE (FER-E e FER-C)</th>
<th>Situazione 2012</th>
<th>Scenario di Piano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotovoltaico</td>
<td>74</td>
<td>8</td>
</tr>
<tr>
<td>Eolico</td>
<td>47</td>
<td>8</td>
</tr>
<tr>
<td>Idroelettrico</td>
<td>86</td>
<td>20</td>
</tr>
<tr>
<td>Biogas</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>Biomassa</td>
<td>451</td>
<td>47</td>
</tr>
<tr>
<td>Solare Termico</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Pompe di calore</td>
<td>1400</td>
<td>53 (*)</td>
</tr>
<tr>
<td>TALEX</td>
<td>146</td>
<td></td>
</tr>
</tbody>
</table>

(*) Calcolato secondo Direttiva Europea fonti rinnovabili (2009/28/CE) e relative linee guida.

Tabella 2.6-A: confronto tra la situazione delle fonti rinnovabili riferita all’anno 2012 e lo scenario di Piano al 2020

<table>
<thead>
<tr>
<th>Obiettivi di Piano al 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo Finale Lordo</td>
</tr>
<tr>
<td>Consumi Finali da Fonti Rinnovabili</td>
</tr>
<tr>
<td>% Decreto Burden Sharing</td>
</tr>
</tbody>
</table>

Tabella 2.6-B: Obiettivo generale del PEAR 2014-2020

Lo Scenario di Piano così come presentato nella “Proposta di PEAR 2014-2020” e del relativo Rapporto Ambientale è stato confrontato con alcune Alternative di Piano, che comprendono lo Scenario “Business As Usual” (BAU), il quale costituisce l’Opzione “Zero”, ovvero lo scenario di riferimento costituito dallo stato attuale delle risorse e dalla loro possibile evoluzione in assenza di Piano, ed uno Scenario Alternativo costruito sulla base di diverse opzioni tecnologiche rispetto a quelle previste nello Scenario di Piano.

La costruzione dello Scenario BAU presenta notevoli complessità legate alla mancanza di informazioni strutturate sulle fonti rinnovabili termiche e all’incertezza del quadro degli incentivi a livello nazionale, che rende complesso effettuare previsioni sull’andamento di tali fonti negli anni a venire.

Si riportano nel seguito le ipotesi adottate per ciascuna fonte al fine di definire il livello di sfruttamento al 2020 in condizioni “BAU”.

![Fotovoltaico - Scenario BAU al 2020](image)

(Fonte: PEAR Regione Liguria 2014-2020)
Per quanto riguarda l’**eolico on-shore** dall’analisi delle autorizzazioni rilasciate ed in corso si è ipotizzato in condizioni BAU l’installazione di ulteriori 60 MW, che condurrebbero a una potenza installata al 2020 pari a circa **120 MW**.

Per il settore **idroelettrico** si è ritenuto di far coincidere lo scenario BAU con la situazione in cui le nuove installazioni non vadano ad incrementare il parco installato: ciò conduce ad una potenza installata cumulata al 2020 pari a **86 MW**.

Per quanto riguarda il **biogas** lo scenario BAU è condizionato dai vincoli sulla disponibilità della risorsa (materia prima) ovvero biomassa non-alimentare e di scarto presente sul territorio regionali; in particolare:

- **la geomorfologia del territorio ligure** preclude le possibilità di sviluppi significativi nelle coltivazioni energetiche oltre che di aziende zootecniche di dimensioni sufficientemente grandi;
- **il trend generale lievemente decrescente** nella produzione di rifiuti solidi urbani (RSU) determina una riduzione della **principale risorsa regionale** per la produzione di biogas (vedi grafico seguente).

Figura 3.1-B: produzione di rifiuti in Liguria dal 2008 al 2012 [t].

(Fonte: Piano Regionale Gestione Rifiuti)

Di conseguenza per lo scenario BAU al 2020 si è ipotizzato un **andamento sostanzialmente costante** della **produzione di biogas ai livelli attuali**.

Per quanto riguarda le fonti termiche, in particolare per la **biomassa** e le **pompe di calore** si è ritenuto di far coincidere lo scenario BAU con la situazione in cui le nuove installazioni non vadano ad incrementare il parco installato, bensì solamente a compensare la riduzione progressiva di macchine installate dovuta al raggiungimento della fine vita tecnologica. Lo scenario BAU per biomassa e pompe di calore prevede pertanto una potenza installata al 2020 sostanzialmente pari a quella attuale (rispettivamente **451 MW** e **1400 MW**).

Per quanto riguarda lo sviluppo del **solare termico** è opportuno evidenziare che, nonostante il ridimensionamento del mercato italiano negli ultimi 2 anni, l’ESTIF (European Solar Thermal Industry Federation) rileva per l’Italia tra il 2010 ed il 2012 (in 3 anni) una crescita degli impianti installati (cumulativi) pari a circa il 10%. Pertanto, assumendo che la crescita al 2020 a livello regionale seguia lo stesso andamento atteso per l’Italia, lo scenario BAU per il settore del solare termico in Liguria conduce ad una potenza cumulativa installata nel 2020 pari a circa **23 MW**.

83 La potenza stimata installata al 2013 è pari a 60MW. Si veda Cap 5.3 del PEAR.
Per quanto riguarda lo Scenario Alternativo, analogamente a quanto già svolto nel Rapporto Ambientale Preliminare, esso è stato costruito cercando di rimodulare l’obiettivo sulla biomassa forestale, più complesso da attuare e che presenta i maggiori impatti sulla qualità dell’aria: al fine di ridurre la potenza installata al 2020 di impianti alimentati a biomassa a 1.400 MWt anziché 1.750 MWt (come previsto dallo Scenario di Piano), mantenendo fermo l’obiettivo finale di consumo finale da fonti rinnovabili al 2020 pari a 373ktep, è stato necessario innalzare i target relativi alle altre fonti rinnovabili: il fotovoltaico è stato portato a 250 MW complessivi, l’eolico a 400 MW, l’idroelettrico a 124 MW (valore prossimo alla soglia del potenziale regionale indicato da ERSE di cui al documento di Piano e al Cap. 4.4.4 del presente documento) ed il solare termico a 170 MWt e mantenendo fisso l’obiettivo per le pompe di calore (già innalzato rispetto allo Schema di Piano) e per il biogas (obiettivo individuato dal PRGR).

Nella tabella seguente si riporta lo schema delle opzioni tecnologiche secondo i diversi scenari così come definiti nella Proposta di PEAR 2014-2020:

<table>
<thead>
<tr>
<th>TIPOLOGIA FONTE RINNOVABILE (FER-E e FER-C)</th>
<th>Situazione Attuale</th>
<th>Scenario “Business AsUsual”</th>
<th>Scenario di Piano</th>
<th>Scenario Alternativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotovoltaico</td>
<td>74</td>
<td>8</td>
<td>118</td>
<td>12</td>
</tr>
<tr>
<td>Eolico</td>
<td>47</td>
<td>8</td>
<td>120</td>
<td>21</td>
</tr>
<tr>
<td>Idroelettrico</td>
<td>86</td>
<td>20</td>
<td>86</td>
<td>20</td>
</tr>
<tr>
<td>Biogas</td>
<td>21</td>
<td>11</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>Biomassa</td>
<td>451</td>
<td>47</td>
<td>451</td>
<td>47</td>
</tr>
<tr>
<td>Solare Termico</td>
<td>11</td>
<td>1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>Pompe di calore</td>
<td>1.400</td>
<td>53 (*)</td>
<td>1400</td>
<td>53 (*)</td>
</tr>
<tr>
<td>TOTALE</td>
<td>146</td>
<td>165</td>
<td>373</td>
<td>373</td>
</tr>
</tbody>
</table>

(*) Calcolato secondo Direttiva Europea fonti rinnovabili (EC 2009/28) e relative linee guida.

Tabella 3.1-A: situazione attuale delle fonti rinnovabili, Scenario BAU, Scenario di Piano e Scenario Alternativo così come definiti nella Proposta di PEAR 2014-2020

![Figura 3.1-D: confronto tra la situazione attuale delle fonti rinnovabili e gli scenari alternativi al 2020.](Fonte: PEAR Regione Liguria 2014-20)

Si riporta nel seguito ad un’analisi sintetica mediante matrice di confronto diretto degli scenari proposti, sulla base delle aree tematiche previste dalla normativa regionale sulla VAS, declinate secondo i relativi elementi di attenzione in termini di peggioramento/miglioramento rispetto alla situazione ambientale attuale.
Legenda

↑↑ Miglioramento:
la realizzazione dello scenario determina effetti positivi diretti sulla componente ambientale analizzata.

↑↑ Relazione positiva:
la realizzazione dello scenario determina effetti positivi anche in modo indiretto sulla componente ambientale analizzata.

← Relazione nulla: non vi è una significativa correlazione fra obiettivi proposti dagli scenari e le aree tematiche analizzate. La realizzazione degli uni non pregiudica, né concorre, alla realizzazione degli altri. Lo scenario è pressoché ininfluente rispetto all’elemento di attenzione analizzato.

↓↓ Potenziale interferenza negativa: la realizzazione del PEAR può potenzialmente interferire in maniera negativa con la componente ambientale considerata. Tale interferenza può tipicamente dipendere dalle modalità di realizzazione degli interventi previsti (scelte progettuali di dettaglio, localizzazione,...) e per i quali si segnala la necessità di una maggiore attenzione. Tali saranno dunque valutate in sede di autorizzazione del singolo impianto secondo la normativa prevista ed il loro impatto può essere efficacemente ridotto con l’inserimento di opportune misure di mitigazione/compensazione).

↓↓ Interferenza negativa:
la realizzazione dello scenario determina effetti negativi sulla componente ambientale analizzata.

<table>
<thead>
<tr>
<th>componente</th>
<th>Elementi di attenzione [1]</th>
<th>Scenario “Business as usual” (BAU)</th>
<th>Scenario di Piano</th>
<th>Scenario Alternativo</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Riduzione della dipendenza dalle fonti fossili rispetto allo stato attuale</td>
<td>↓</td>
<td>↑↑</td>
<td>↑↑</td>
<td>L’incremento previsto al 2020 nella produzione locale e nel consumo di energia da fonti rinnovabili concorre a ridurre la dipendenza dalle fonti fossili.</td>
</tr>
<tr>
<td>aria e fattori climatici</td>
<td>Emissioni di gas climateranti</td>
<td>↓</td>
<td>↑↑</td>
<td>↑↑</td>
<td>A parità di consumi finali, la sostituzione dell’energia prodotta in precedenza da fonti fossili con quella rinnovabile comporta una riduzione nelle emissioni di CO₂. Discorso a parte meritan no gli impianti a biomassa: se gli impianti sono approvvigionati da biomassa locale le emissioni di biossido di carbonio prodotte dalla combustione delle biomasse sono considerate pari a quelle assorbite dalle piante per produrre una pari quantità di biomasse, generando (dal termine del primo ciclo di sfruttamento del bosco) un bilancio zero delle emissioni di gas serra per questo tipo di impianti (trascurando le emissioni dei mezzi di trasporto).</td>
</tr>
<tr>
<td></td>
<td>Altre emissioni (inquinanti) in atmosfera</td>
<td>←→</td>
<td>↑</td>
<td>↑↑</td>
<td>Le fonti energetiche rinnovabili, fatta salva la fase di cantiere, non generano emissioni inquinanti in atmosfera. Pertanto l’effetto di sostituzione dell’energia prodotta in precedenza da fonti fossili con quella rinnovabile comporta una riduzione nelle emissioni di inquinanti atmosferici. Diversamente gli impianti a biomassa producono emissioni di diverse tipologie di inquinanti atmosferici e polveri sottili e pertanto non generano benefici ambientali significativi rispetto allo stato attuale se non in determinate condizioni di sfruttamento (BAT). Per questo motivo i benefici ambientali dello scenario di Piano, caratterizzato da una quota maggiore di produzione da biomassa, sono inferiori a quelli dello scenario alternativo. Emissioni possono essere prodotte anche dagli impianti di cogenerazione e trigenerazione, che risultano tuttavia inferiori rispetto a sistemi di produzione di energia separati.</td>
</tr>
<tr>
<td>ciclo delle acque</td>
<td>Qualità delle acque</td>
<td>←→</td>
<td>↓</td>
<td>↓</td>
<td>La realizzazione di nuovi impianti idroelettrici potrebbe interferire negativamente con la qualità delle acque in relazione a determinate tipologie impiantistiche.</td>
</tr>
<tr>
<td></td>
<td>Flusso dei corpi idrici superficiali e sotterranei</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>L’impatto delle alternative di Piano su questo elemento di attenzione dipende dalla scelta tecnologica adottata; il Piano privilegia per il settore idroelettrico soluzioni tecnologiche di piccola taglia con modesto impatto sul delhasso dei corpi idrici superficiali. Qualora venissero realizzati impianti di dimensioni maggiori l’impatto crescerrebbe. Presumibilmente modesto anche l’impatto sulle acque sotterranee per l’installazione di Pompe di calore geotermiche.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>componente</th>
<th>Elementi di attenzione [1]</th>
<th>Scenario “Business as usual” (BAU)</th>
<th>Scenario di Piano</th>
<th>Scenario Alternativo</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>suolo e sottosuolo</td>
<td></td>
<td>➕ ➕ ➖ ➖</td>
<td></td>
<td>Lo Scenario di Piano prevede per il solare fotovoltaico (principale opinione tecnologica che richiede occupazione di suolo) localizzazioni in aree degradate dal punto di vista ambientale o su edifici. Qualora tali indicazioni non venissero adottate tali scenari potrebbero produrre effetti negativi relativi a tale area tematica. Per l’elico si considera un consumo di suolo per la fondazione della torre e la piazzola di manovra. Gli effetti negativi potrebbero essere più significativi per lo Scenario Alternativo, che prevede un incremento della potenza fotovoltaica ed elica installata.</td>
<td></td>
</tr>
<tr>
<td>Cave e discariche</td>
<td></td>
<td>➕ ➖ ➖</td>
<td></td>
<td>L’uso a fini energetici di questi territori, spesso in condizioni di abbandono e di forte degrado, ne favorisce il recupero.</td>
<td></td>
</tr>
<tr>
<td>Contaminazione dei suoli e aspetti geologici, geomorfologici e idraulici</td>
<td>➕ ➖ ➖ ➖</td>
<td>➖ ➖ ➖ ➖</td>
<td></td>
<td>La valorizzazione della biomassa boschiva locale e la creazione della filiera legno-energia comporta interventi di manutenzione del territorio con positive ricadute ai fini della stabilità idro-geologica.</td>
<td></td>
</tr>
<tr>
<td>biodiversità e aree protette</td>
<td></td>
<td>➖ ➖ ➖ ➖</td>
<td></td>
<td>Anche se generalmente moderate, possono presentarsi interferenze con la vegetazione e la fauna nel caso di impianti eolici (avifauna in particolare), nelle attività di prelievo (raccolta e trasporto) di biomassa dalle aree boschive, e per impianti idroelettrici che coinvolgono corpi idrici superficiali, soprattutto in presenza di siti Rete Natura 2000.</td>
<td></td>
</tr>
<tr>
<td>paesaggio e patrimonio culturale, architettonico, archeologico</td>
<td></td>
<td>➖ ➖ ➖ ➖</td>
<td></td>
<td>Possibili interferenze visive con il paesaggio legate principalmente alla realizzazione di impianti eolici, ma anche alle attività di prelievo (raccolta e trasporto) di biomassa dalle aree boschive, e dagli impianti idroelettrici.</td>
<td></td>
</tr>
<tr>
<td>Interferenza con patrimonio culturale/ storico e architettonico</td>
<td>➖ ➖ ➖ ➖</td>
<td>➖ ➖ ➖ ➖</td>
<td></td>
<td>Potenziali impatti derivanti dalla realizzazione di impianti solari sia fotovoltaici che solari termici in aree soggette a vincoli storici o architettonici.</td>
<td></td>
</tr>
<tr>
<td>inquinamento acustico</td>
<td>Inquinamento acustico legato all’esercizio degli impianti</td>
<td>➖ ➖ ➖ ➖</td>
<td></td>
<td>Possibile emissione di rumori dagli impianti, dai mezzi di trasporto e conferimento della biomassa e dai generatori e pale eoliche in movimento.</td>
<td></td>
</tr>
<tr>
<td>inquinamento elettromagnetico</td>
<td>Linea ad alta e media tensione e sottostazioni di trasformazione</td>
<td>➖ ➖ ➖ ➖</td>
<td></td>
<td>Lo scenario viene valutato come negativo nel caso in cui vengano realizzati impianti da fonti rinnovabili elettriche di taglia significativa che richiedano reti di alta tensione. Escluso qualche raro caso di grande parco eolico, la maggioranza degli interventi previsti dal Piano prevede la connessione alla rete elettrica in bassa e in media tensione.</td>
<td></td>
</tr>
<tr>
<td>Produzione di rifiuti in fase di esercizio</td>
<td>➖ ➖ ➖ ➖</td>
<td>➖ ➖ ➖ ➖</td>
<td></td>
<td>Gestione delle cener prodotte dagli impianti a biomassa e della qualità nei fanghi di risulta per la produzione di biogas nel caso di utilizzo come fertilizzante.</td>
<td></td>
</tr>
<tr>
<td>salute e qualità vita</td>
<td></td>
<td>➖ ➖ ➖ ➖</td>
<td></td>
<td>Miglioramento della salute pubblica legato all’effetto di sostituzione di energia prodotta da fonti fossili e miglioramento della qualità della vita grazie alle riscaldature di sviluppo economico ed occupazionali generate a livello locale del Piano. Miglioramento della fruibilità del territorio con incremento delle attività ludiche e della fruizione turistica delle aree interne grazie alla creazione della filiera legno-energia.</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 3.1-B: matrice di confronto diretto degli scenari proposti rispetto alla situazione ambientale attuale

Dall’analisi della precedente tabella emerge la presenza di alcuni elementi di criticità che derivano dalla natura stessa del Piano, che si pone quale macro-obiettivo principale il soddisfacimento degli obblighi derivanti dalla normativa.
nazionale (Burden Sharing) e pertanto la realizzazione di impianti caratterizzati da possibili impatti sulle componenti ambientali. Tali aspetti vengono esaminati approfonditamente al Cap. 4.4 del Rapporto Ambientale, nel quale vengono peraltro definite misure di attenzione/mitigazione.

3.2. Integrazione delle considerazioni ambientali

Vengono di seguito sintetizzati gli effetti ambientali della Proposta di PEAR 2014-2020 mettendo in relazione le azioni di intervento proposte con i temi descritti nell’analisi di contesto (Parte Seconda del Rapporto Ambientale) ed evidenziandone le possibili interazioni, con particolare attenzione ai temi sensibili emersi nel quadro conoscitivo ambientale.

Di seguito viene presentata una Matrice di Screening relativa agli effetti delle Linee di Sviluppo in termini di possibili impatti negativi sulle componenti ambientali o di aggravio delle pressioni generate dai fattori antropici. Per maggiore sinteticità viene espressa in questo caso solo la potenziale interferenza negativa tra Linee di Sviluppo e specifica tematica84. La matrice presenta le Linee di Sviluppo per ragioni di sinteticità, ma queste sono state considerate attraverso le singole Azioni comprese in ogni Linea di Sviluppo.

La suddivisione (coerentemente con il Quadro Conoscitivo del Rapporto Ambientale) è stata la seguente:

- **COMPONENTI AMBIENTALI**
 - Aria e fattori climatici
 - Suolo ed assetto idrogeologico
 - Acque superficiali e sotterranee
 - Biodiversità
 - Paesaggio
- **FACTORI ANTROPICI**
 - Inquinamento acustico
 - Elettromagnetismo
 - Rifiuti
- **FACTORI SOCIO-ECONOMICI**

Questa matrice sintetizza quelle contenute nel Rapporto Ambientale relative a:

- Matrice di coerenza tra Criteri di Sostenibilità del Manuale UE e Linee di Sviluppo PEAR (Tabella 4.1.2-A del Rapporto Ambientale)
- Matrice tra Linee di Sviluppo PEAR e PTR (Tabella 4.1.4-C del Rapporto Ambientale)
- Matrice tra Linee di Sviluppo PEAR e Pianificazione Settoriale (Tabella 4.1.4-D del Rapporto Ambientale)
- Matrice di confronto diretto degli scenari proposti (Tabella 4.3.2-A del Rapporto Ambientale)

Per ogni Matrice, in caso di negatività emerse nella valutazione, è stata redatta una “Matrice di Risposta” con evidenziazione delle cause delle negatività e delle possibili soluzioni o mitigazioni.

84 La matrice presenta le Linee di Sviluppo per ragioni di sinteticità, ma queste sono state considerate attraverso le singole Azioni comprese in ogni Linea di Sviluppo.
Figura 3.2-A: esempio di Matrice del Rapporto Ambientale (Matrice tra Linee di Sviluppo e Criteri del Manuale UE)
Figura 3.2-B: Esempio di Matrice di Risposta del Rapporto Ambientale (Matrice tra Linee di Sviluppo e Criteri del Manuale UE)

<table>
<thead>
<tr>
<th>LINEE DI SVILUPPO del PEAR</th>
<th>componenti ambientali</th>
<th>fattori antropici</th>
<th>fatt.</th>
<th>TECNOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE.1. Ridurre i consumi energetici del settore residenziale</td>
<td></td>
<td></td>
<td></td>
<td>EFFICIENZA ENERGETICA</td>
</tr>
<tr>
<td>EE.2. Incrementare l’efficienza energetica nei settori terziario, imprese e cicli produttivi</td>
<td></td>
<td></td>
<td></td>
<td>EFFICIENZA ENERGETICA</td>
</tr>
<tr>
<td>EE.3. Incrementare l’efficienza energetica del patrimonio edilizio pubblico e dell’illuminazione pubblica</td>
<td></td>
<td></td>
<td></td>
<td>COGENERAZIONE \ TRIGENERAZIONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- TELE RISCALDAMENTO / RAFFRESCAM.</td>
</tr>
<tr>
<td>EE.4. Favorire l’installazione di sistemi tecnologici avanzati quali impianti di cogenerazione e trigenerazione, teleriscaldamento e teleraffrescamento</td>
<td>(a)</td>
<td></td>
<td></td>
<td>FOTOVOLTAICO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOLICO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IDROELETTRICO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BIOGAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>FER.1. Promuovere la realizzazione di impianti fotovoltaici su edifici ed in aree industriali o degradate dal punto di vista ambientale</td>
<td></td>
<td></td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>FER.2. Favorire l’installazione di impianti eolici attraverso la semplificazione delle procedure autorizzative</td>
<td></td>
<td></td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>FER.3. Sostenere l’installazione di impianti di piccola taglia nel settore idroelettrico e la riattivazione di centraline esistenti</td>
<td></td>
<td></td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>FER.4. Incrementare la produzione energetica da biogas da RSU</td>
<td>(b)</td>
<td></td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>FER.5. Sviluppare la ricerca nei settori tecnologici correlati alle fonti rinnovabili ed all’efficienza energetica</td>
<td></td>
<td></td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>FER.6. Favorire lo sviluppo delle Smart-grid</td>
<td></td>
<td></td>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>
Tabella 3.2-A: matrice di screening degli effetti potenzialmente negativi delle linee di sviluppo e delle azioni del Rapporto Ambientale

A seguito della matrice di screening, nel Rapporto Ambientale le potenziali interferenze (che possono impattare sulle varie componenti ambientali o possono aggravare la pressione dei fattori antropici) sono state meglio specificate nelle schede valutative delle Linee di Sviluppo e delle relative Azioni (per coerenza collegate alle schede del Quadro Conoscitivo del Rapporto Ambientale), nelle quali erano presenti anche le relative misure di attenzione/mitigazione. La valutazione delle singole azioni è stata condotta nel Rapporto Ambientale (a cui si demanda per gli approfondimenti specifici) sulla base dei seguenti elementi:\(^{85}\):

<table>
<thead>
<tr>
<th>Effetto positivo diretto</th>
<th>Effetto positivo indiretto</th>
<th>Effetto negativo diretto</th>
<th>Effetto negativo indiretto</th>
<th>Effetto incerto o potenzialmente negativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ D</td>
<td>+ I</td>
<td>- D</td>
<td>- I</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effetto spazialmente localizzato a scala locale</th>
<th>Effetto spazialmente localizzato a vasta scala</th>
<th>Effetto non spazialmente localizzato</th>
<th>Effetto a lungo termine</th>
<th>Effetto a breve termine</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>SV</td>
<td>NS</td>
<td>LT</td>
<td>BT</td>
</tr>
</tbody>
</table>

\(^{85}\) metodologia utilizzata nei RA di POR e PSR 2014-20 della Regione Valle d’Aosta (Baldizzone, Colombelli, Ietri, Spaziante)
Per quanto riguarda gli impianti di combustione, gli effetti sulla salute e sulle condizioni ambientali sono particolarmente rilevanti. Il Rapporto Ambientale si propone di analizzare dettagliatamente il bilancio di queste imprese, evidenziando le problematiche legate alla loro attività. In particolare, si focalizza sulle emissioni di anidride carbonica (CO₂), un gas serra molto attivo, che rappresenta uno dei principali responsabili degli effetti climatici sulle condizioni ambientali.

Lo stoccaggio dei rifiuti da discarica è particolarmente importante dato che essi contengono diversi materiali che possono causare danni al suolo e all'acqua. Gli impianti di combustione sono in grado di ridurre significativamente il volume di rifiuti, consentendo la loro progettazione in modo tale da minimizzare il rischio di inquinamento. Tuttavia, è necessario un approccio rigoroso nella gestione dei rifiuti, assicurando che essi siano adeguatamente trattati e trasformati in materiali di recupero.

Il Rapporto Ambientale si propone di analizzare dettagliatamente il bilancio di queste imprese, evidenziando le problematiche legate alla loro attività. In particolare, si focalizza sulle emissioni di anidride carbonica (CO₂), un gas serra molto attivo, che rappresenta uno dei principali responsabili degli effetti climatici sulle condizioni ambientali.

Figura 3.2-C: esempio di scheda valutativa per singola componente (Rapporto Ambientale)
4 Adeguamento agli esiti della valutazione ambientale

4.1. Contenuti generali del Parere Motivato e sua ottemperanza

In fase di istruttoria dell’Autorità Competente sono stati consultati i soggetti competenti in materia ambientale individuati con riferimento ai contenuti specifici del piano, nonché le strutture regionali competenti in relazione alle tematiche trattate. L’istruttoria condotta dal responsabile del procedimento del Settore VIA, con la collaborazione dei soggetti competenti in materia ambientale che hanno ritenuto di formulare osservazioni, e delle altre strutture regionali interessate si è concretizzata nel Parere Motivato (PM nel seguito) n. 47/2015, reso a voti unanimi dalla sezione per la VAS del CTR per il Territorio nella seduta del 29 aprile 2015.

Dal PM risulta la sostenibilità ambientale del Piano, nonché valutazione di incidenza positiva - condizionate all’ottemperanza di alcune prescrizioni, volte ad allineare i contenuti con la programmazione economica regionale sui fondi europei e a definire modalità attuative maggiormente efficaci e ambientalmente sostenibili; è invece formulata valutazione di incidenza negativa sulla proposta di nuova Cartografia delle Aree Non Idonee alla collocazione di impianti eolici, con conseguente mantenimento in vigore della Carta nella versione allegata alla DCR. n. 3/2009.

Il Servizio Energia del Dipartimento Sviluppo Economico ha provveduto alla redazione conclusiva del Piano, secondo quanto previsto dall’Art. 10 comma 4 della L.R. n. 32/2012 e ss.mm.ii., recependo le prescrizioni indicate nel suddetto PM.

Dall’analisi del PM emerge come la maggior parte delle prescrizioni faccia riferimento ad aspetti della pianificazione energetica che sono vincolati dal quadro normativo nazionale ed europeo; ciò determina difficoltà e costrizioni nella definizione delle modalità di raggiungimento degli obiettivi previsti.

Il Piano Energetico Ambientale Regionale, si sviluppa infatti all’interno di una “road map” tracciata dalle Direttive e dalle Comunicazioni Europee che, a partire dal 2008, hanno definito gli obiettivi ed un piano di azione europeo, per “promuovere ulteriormente le energie rinnovabili, dato che il loro uso contribuisce all'attenuazione dei cambiamenti climatici, grazie alla riduzione delle emissioni di gas a effetto serra, allo sviluppo sostenibile, alla sicurezza degli approvvigionamenti e allo sviluppo di un'industria basata sulla conoscenza che crea posti di lavoro, favorisce la crescita economica, stimola la concorrenza e lo sviluppo regionale e rurale.”

Le politiche energetiche e le opzioni strategiche contenute nel PEAR nascevano quindi in coerenza con le iniziative europee del Pacchetto Clima Energia e con lo scenario nazionale di recepimento delle Direttive e di declinazione degli obiettivi assegnati agli Stati Membri a livello nazionale dal Decreto del Ministero dello Sviluppo Economico 15 Marzo 2012 recante “Definizione e qualificazione degli obiettivi regionali in materia di fonti rinnovabili e definizione delle modalità di gestione dei casi di mancato raggiungimento degli obiettivi da parte delle regioni e delle province autonome (c.d. Burden Sharing)”.

86 Dipartimento Ambiente della Regione Liguria, con Coordinamento tecnico del settore che si occupa di Valutazione di Impatto Ambientale (VIA).
87 A supporto consultivo dell’Autorità Competente la Regione ha istituito una sezione del Comitato tecnico regionale per il territorio (CTRT) specificamente competente in materia di VAS.
Il Decreto "Burden Sharing" ripartisce l’obiettivo nazionale di sviluppo delle fonti rinnovabili (17%) tra le varie regioni italiane, assegnando alla Liguria l’obiettivo finale del 14,1% e obiettivi intermedi biennali, come riportati nella tabella che segue. L’obiettivo è dato dal rapporto tra i consumi finali da fonti rinnovabili ed i consumi finali lordi:

\[
\frac{\text{Consumo Finale da Fonti rinnovabili}}{\text{Consumo Finale Lordo}} = 14.1\%
\]

Per poter conseguire gli obiettivi del Decreto occorre quindi agire simultaneamente sul numeratore e denominatore, ovvero incrementando l’utilizzo delle fonti rinnovabili e riducendo i consumi finali lordi attraverso interventi di efficienza energetica. Ciò implica il ricorso ad un mix di opzioni tecnologiche, che presentano punti di forza e di debolezza, ed il cui impiego è da calibrare in relazione al potenziale energetico ed alle ricadute sull’ambiente, con le conseguenti criticità nella redazione e nella valutazione dei documenti di pianificazione energetica.

<table>
<thead>
<tr>
<th>Regioni e province autonome</th>
<th>Obiettivo regionale per l’anno [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>anno iniziale di riferimento</td>
</tr>
<tr>
<td>Abruzzo</td>
<td>5,8</td>
</tr>
<tr>
<td>Basilicata</td>
<td>7,9</td>
</tr>
<tr>
<td>Calabria</td>
<td>8,7</td>
</tr>
<tr>
<td>Campania</td>
<td>4,2</td>
</tr>
<tr>
<td>Emilia Romagna</td>
<td>2,0</td>
</tr>
<tr>
<td>Friuli V. Giulia</td>
<td>5,2</td>
</tr>
<tr>
<td>Lazio</td>
<td>4,0</td>
</tr>
<tr>
<td>Liguria</td>
<td>3,4</td>
</tr>
<tr>
<td>Lombardia</td>
<td>4,9</td>
</tr>
<tr>
<td>Marche</td>
<td>2,6</td>
</tr>
<tr>
<td>Molise</td>
<td>10,8</td>
</tr>
<tr>
<td>Piemonte</td>
<td>9,2</td>
</tr>
<tr>
<td>Puglia</td>
<td>3,0</td>
</tr>
<tr>
<td>Sardegna</td>
<td>3,8</td>
</tr>
<tr>
<td>Sicilia</td>
<td>2,7</td>
</tr>
<tr>
<td>TAA – Bolzano</td>
<td>32,4</td>
</tr>
<tr>
<td>TAA – Trento</td>
<td>28,6</td>
</tr>
<tr>
<td>Toscana</td>
<td>6,2</td>
</tr>
<tr>
<td>Umbria</td>
<td>6,2</td>
</tr>
<tr>
<td>Valle D’Aosta</td>
<td>51,6</td>
</tr>
<tr>
<td>Veneto</td>
<td>3,4</td>
</tr>
<tr>
<td>Italia</td>
<td>5,3</td>
</tr>
</tbody>
</table>

In generale le prescrizioni contenute nel PM n. 47/2015 afferiscono a tre principali categorie:
1. integrazioni relative agli aspetti di pianificazione energetica ed al perfezionamento del quadro conoscitivo in materia di energia;
2. allineamento delle azioni di Piano con gli strumenti di programmazione ed in particolare con il programma operativo "POR Liguria FESR", approvato dalla commissione Europea con Decisione di Esecuzione del 12/02/2015 (successiva all’approvazione della Proposta di PEAR 2014-2020);
3. approfondimenti su norme e piani ambientali e relativo meccanismo di feedback sul PEAR 2014-2020 (integrazione nel Piano delle indicazioni derivanti dal Rapporto Ambientale).

Si riportano nel seguito, con riferimento alle singole sezioni del Parere Motivato, le prescrizioni (P n, nei box, in grassetto corsivo) contenute nel PM n. 47/2015 da ritenersi vincolanti per l’adeguamento del PEAR, i relativi indirizzi (In) per il recepimento delle prescrizioni (presenti nel Documento degli Indirizzi di cui sopra) ed il riscontro puntuale nel PEAR adeguato e suoi allegati (Allegato 1 “Il Quandro normativo sui temi ambientali”; Allegato 2 “Sintesi degli aspetti ambientali e misure di attenzione/mitigazione”; Allegato 3 “Piano di Monitoraggio”).

88 Il D.M. 15/03/2012 definisce il consumo finale lordo di energia di una Regione o Provincia autonoma come somma dei seguenti tre termini:
a) consumi elettrici, compresi i consumi degli ausiliari di centrale, le perdite di rete e i consumi elettrici per trasporto;
b) consumi di energia per riscaldamento e raffreddamento in tutti i settori, con esclusione del contributo dell’energia elettrica per usi termici;
c) consumi per tutte le forme di trasporto, ad eccezione del trasporto elettrico e della navigazione internazionale.
4.2. Prescrizioni relative alla sezione “Partecipazione”

Riscontro nel Documento di PEAR adeguato:
Cap. 6 “La strategia energetica regionale” pag. 67

4.3. Prescrizioni relative alla sezione “Sintesi dei contenuti del Piano”

18.1.1.1.1.1 4.3.1.Considerazioni generali

In particolare l’allineamento dei dati dei consumi di energia da fonti rinnovabili è stato effettuato al 2011 sulla base dei disponibili presso il Sistema Informativo Ambientale Regionale integrati tenendo conto di statistiche a livello nazionale; in fase di adeguamento del Piano i dati di potenza installata mancanti sono stati stimati sulla base di ore convenzionali di funzionamento, secondo quanto già svolto in fase di redazione del PEAR.

<table>
<thead>
<tr>
<th>TIPOLOGIA FONTE RINNOVABILE (FER-E e FER-C)</th>
<th>Situazione 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potenza Installata [MW]</td>
<td>Produzione di energia rinnovabile [ktep/anno]</td>
</tr>
<tr>
<td>Fotovoltaico</td>
<td>53,6</td>
</tr>
<tr>
<td>Eolico</td>
<td>23,1</td>
</tr>
<tr>
<td>Idroelettrico</td>
<td>84,3</td>
</tr>
<tr>
<td>Biogas</td>
<td>19,6</td>
</tr>
<tr>
<td>Biomassa</td>
<td>450,7.</td>
</tr>
<tr>
<td>Solare Termico</td>
<td>15,0</td>
</tr>
<tr>
<td>Pompe di calore</td>
<td>1400.</td>
</tr>
<tr>
<td>TOTALE</td>
<td></td>
</tr>
</tbody>
</table>

Si prevede quale specifica azione di Piano la programmazione dell’aggiornamento del Bilancio Energetico Regionale, da realizzarsi in fase di attuazione e di monitoraggio del PEAR 2014-2020, al fine di garantire la necessaria disponibilità di dati energetici regionali.

Riscontro nel Documento di PEAR adeguato:
• Cap. 4.3 “Gli esiti del PEAR 2003 ed il PEAR 2014 – 2020” pag. 37
• Cap. 5.3 “La situazione attuale delle fonti rinnovabili” pag. 62
• Cap. 6.1 “Gli obiettivi generali e le linee di sviluppo del PEAR ed il conseguimento dell’obiettivo del Burden Sharing” pag. 69

L’analisi del precedente periodo di programmazione va inoltre integrata con la verifica anche dell’efficienza di spesa, essendo nota la dimensione dell’investimento complessivo (circa
20 milioni di euro). In tale contesto, un ulteriore dato di interesse è costituito dalla quota percentuale di quanto speso rispetto a quanto complessivamente disponibile. Se ne potrebbero derivare indicazioni utili per la programmazione futura, che peraltro è stata posta dalla Commissione Europea come condizione per il finanziamento dei pertinenti assi sul POR 2014-2020. “

Riscontro nel Documento di PEAR adeguato:
Cap. 4.3 “Gli esiti del PEAR 2003 ed il PEAR 2014 – 2020”

P4 pg 6 PM n. 47/2015 - “Poiché le azioni rimandano alle misure di finanziamento del POR, occorre verificare l’allineamento con la programmazione finanziaria, avendo il POR per la parte energetica subito delle modifiche a seguito di specifiche osservazioni della Commissione (eliminazione dei finanziamenti per impianti a biomassa legnosa, potenziamento del sostegno per gli impianti a biogas, etc.).

Il POR 20014-2020 è oggi nel suo assetto definitivo ed è quindi possibile individuare specificamente le fonti di finanziamento accessibili per il raggiungimento degli obiettivi del PEAR. Per ogni azione occorre individuare puntualmente le relative fonti di finanziamento all’interno del POR e del PSR. Le sinergie devono infatti essere promosse anche con il PSR, che nel Piano è nominato una volta e mai in relazione alle sue fasi attuative, con riferimento in particolare alle misure a sostegno della formazione di filiere del bosco.

Intrinseca a questo processo deve essere la verifica di idoneità delle risorse disponibili, ovvero di coerenza dell’obiettivo quantitativo posto rispetto a quanto stanziable a suo sostegno (almeno coerenza di scala fra fondi disponibili e quantità attese, anche sulla base dell’esperienza pregressa….).”

Strumenti di programmazione – Elementi di interesse per il PEAR:

a) PROGRAMMA OPERATIVO FONDO EUROPEO SVILUPPO REGIONALE - REGIONE LIGURIA 2014-2020 (POR FESR 2014-2020)

Il POR FESR 2014-2020 della Regione Liguria, approvato dalla Commissione Europea il 12/02/2015, rappresenta il principale strumento per lo sviluppo regionale, per il rilancio dell’economia e per il sostegno all’occupazione con una dotazione di risorse pari a oltre 392 milioni di euro. Esso rispetta i vincoli stringenti posti dalla Commissione Europea in ordine alla destinazione delle risorse, in particolare:

• concentrare almeno l’80% delle risorse sui seguenti Obiettivi Tematici (OT):
 – OT1 - Ricerca, sviluppo tecnologico e innovazione
 – OT2 - Agenda digitale
 – OT3 - Competitività delle piccole e medie imprese
 – OT4 - Energia sostenibile e qualità della vita;
• destinare almeno il 20% del totale delle risorse all’OT4;
• destinare almeno il 5% del totale delle risorse all’attuazione dell’Agenda Urbana per lo sviluppo sostenibile delle grandi città.

Il POR FESR della Liguria è articolato secondo 7 Assi Prioritari di intervento, alcuni dei quali presentano significative sinergie con le linee di indirizzo del PEAR:

• 1 - Ricerca e innovazione
• 3 - Competitività delle imprese
• 4 - Energia
• 6 - Città
In tabella seguente si riportano gli elementi principali (Obiettivi Tematici, Priorità di Investimento, Obiettivi Specifici) degli Assi del POR FESR correlati alle azioni del PEAR.

<table>
<thead>
<tr>
<th>Asse</th>
<th>Obiettivo Tematico</th>
<th>Priorità</th>
<th>Obiettivo Specifico</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Potenziare l'infrastruttura per la ricerca e l'innovazione (R&I) e le capacità di sviluppare l'eccellenza nella R&I nonché promuovere centri di competenza, in particolare quelli di interesse europeo</td>
<td>1.5 Potenziamento della capacità di sviluppare l’eccellenza nella R&I (Rif. RA 1.5 AP)</td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>Promuovere gli investimenti delle imprese in R&I sviluppando collegamenti e sinergie tra imprese, centri di ricerca e sviluppo e il settore dell’istruzione superiore, in particolare promuovendo gli investimenti nello sviluppo di prodotti e servizi, il trasferimento di tecnologie, l'innovazione sociale, l'ecoinnovazione, le applicazioni nei servizi pubblici, lo stimolo della domanda, le reti, i cluster e l'innovazione aperta attraverso la specializzazione intelligente, nonché sostenere la ricerca tecnologica e applicata, le linee pilota, le azioni di validazione precoce dei prodotti, le capacità di fabbricazione avanzate e la prima produzione, soprattutto in tecnologie chiave abilitanti, e la diffusione di tecnologie con finalità generali</td>
<td>1.1 Incremento dell’attività di innovazione delle imprese (Rif. RA 1.1 AP) 1.2 Rafforzamento del sistema innovativo regionale e nazionale (Rif. RA 1.2 AP)</td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>Promuovere l'infrastruttura per la ricerca e l'innovazione (R&I) e le capacità di sviluppare l'eccellenza nella R&I nonché promuovere centri di competenza, in particolare quelli di interesse europeo</td>
<td>1.5 Potenziamento della capacità di sviluppare l’eccellenza nella R&I (Rif. RA 1.5 AP)</td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td>Promuovere gli investimenti delle imprese in R&I sviluppando collegamenti e sinergie tra imprese, centri di ricerca e sviluppo e il settore dell’istruzione superiore, in particolare promuovendo gli investimenti nello sviluppo di prodotti e servizi, il trasferimento di tecnologie, l'innovazione sociale, l'ecoinnovazione, le applicazioni nei servizi pubblici, lo stimolo della domanda, le reti, i cluster e l'innovazione aperta attraverso la specializzazione intelligente, nonché sostenere la ricerca tecnologica e applicata, le linee pilota, le azioni di validazione precoce dei prodotti, le capacità di fabbricazione avanzate e la prima produzione, soprattutto in tecnologie chiave abilitanti, e la diffusione di tecnologie con finalità generali</td>
<td>1.1 Incremento dell’attività di innovazione delle imprese (Rif. RA 1.1 AP) 1.2 Rafforzamento del sistema innovativo regionale e nazionale (Rif. RA 1.2 AP)</td>
<td></td>
</tr>
<tr>
<td>3c</td>
<td>Sostenere la creazione e l’ampliamento di capacità avanzate per lo sviluppo di prodotti e servizi</td>
<td>3.2 Sviluppo occupazionale e produttivo in aree territoriali colpite da crisi diffusa delle attività produttive (Rif. RA 3.2 AP)</td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>Promuovere l'efficienza energetica e l'uso dell'energia rinnovabile nelle imprese</td>
<td>3.1 Rilancio della propensione agli investimenti del sistema produttivo (Rif. RA 3.1 AP)</td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>Promuovere l'efficienza energetica e l'uso dell'energia rinnovabile nelle imprese</td>
<td>4.2 Riduzione dei consumi energetici e delle emissioni nelle imprese e integrazione di fonti rinnovabili (Rif. RA 4.2 AP)</td>
<td></td>
</tr>
<tr>
<td>4c</td>
<td>Sostenere l'efficienza energetica, la gestione intelligente dell'energia e l'uso dell'energia rinnovabile nelle infrastrutture pubbliche, compresi gli edifici pubblici, e nel settore dell'edilizia abitativa</td>
<td>4.1 Riduzione dei consumi energetici negli edifici e nelle strutture pubbliche o ad uso pubblico, residenziali e non residenziali e integrazione di fonti rinnovabili (Rif. RA 4.1 AP)</td>
<td></td>
</tr>
<tr>
<td>6c</td>
<td>Sostenere l'efficienza energetica, la gestione intelligente dell'energia e</td>
<td>6.2 Riduzione dei consumi energetici negli edifici e</td>
<td></td>
</tr>
</tbody>
</table>
Elementi del POR FESR correlati alle azioni del PEAR (2014-2020)

<table>
<thead>
<tr>
<th>Asse</th>
<th>Obiettivo Tematico</th>
<th>Priorità</th>
<th>Obiettivo Specifico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>emissioni di carbonio in tutti i settori</td>
<td>Fuso dell'energia rinnovabile nelle infrastrutture pubbliche, compresi gli edifici pubblici, e nel settore dell'edilizia abitativa</td>
<td>nelle strutture pubbliche o ad uso pubblico, residentiali e non residentiali e integrazione di fonti rinnovabili (Rif. RA 4.1 AP)</td>
</tr>
</tbody>
</table>

La Commissione Europea ha approvato il 6/10/2015 il PSR 2014-2020 della Regione Liguria.

Le risorse pubbliche disponibili per il periodo di programmazione 2014-2020 (135 milioni di euro dal bilancio dell'UE e 179 milioni di euro di cofinanziamento nazionale e regionale), serviranno principalmente ad aumentare la competitività del settore agricolo e forestale attraverso il sostegno ad interventi finalizzati anche alla ristrutturazione ed all'ammodernamento delle imprese. Particolare attenzione è inoltre rivolta ad innovazione, sviluppo economico delle aree rurali, inclusione sociale e salvaguardia, ripristino e valorizzazione del territorio.

Il PSR della Liguria è composto da 16 misure (articolate in sottomisure ed operazioni collegate alle focus area), alcune dei quali presentano significative sinergie con le linee di indirizzo del PEAR:

- M01 Trasferimento di conoscenze e azioni di informazione (Art. 14)
- M04 Investimenti in immobilizzazioni materiali (Art. 17)
- M06 Sviluppo delle aziende agricole e delle imprese (Art. 19)
- M07 Servizi di base e rinnovamento dei villaggi nelle zone rurali (Art. 20)
- M08 Investimenti nello sviluppo delle aree forestali e nel miglioramento della redditività delle foreste (articolati da 21 a 26)
- M09 Costituzione di associazioni e organizzazioni di produttori (Art. 27)
- M16 Cooperazione (Art. 35)

Di seguito vengono riportate Misure e Sottomisure del PSR Liguria correlate alle azioni del PEAR. Si evidenzia come nella misura M04, che è particolarmente rilevante dal punto di vista finanziario, siano stati definiti criteri di selezione che assegnano un peso molto importante al risparmio energetico e al riciclaggio – anche a scopo energetico – dei rifiuti e dei sottoprodotti.

c) PROGRAMMA OPERATIVO FONDO SOCIALE EUROPEO - REGIONE LIGURIA 2014-2020 (POR FSE 2014-2020)

Il POR FSE 2014-2020 della Liguria è frutto di un percorso di confronto tra le istituzioni e il partenariato sociale e rappresenta la strategia per operare in linea con gli obiettivi di Europa 2020 per una crescita intelligente, sostenibile e solidale, agendo in favore dell'occupazione, dell'istruzione e formazione, dell'inclusione sociale e della capacità amministrativa.

Il Programma è suddiviso secondo quattro Assi Prioritari (che corrispondono agli Obiettivi Tematici (OT) propri del FSE), oltre ad un quinto dedicato all’Assistenza Tecnica.

L’80% delle risorse del Programma, come richiesto dai regolamenti comunitari, è focalizzato su 5 priorità d'investimento che fanno capo ai 4 Obiettivi Tematici del Fondo e il 20% di esse è dedicato all'OT "Promuovere l'inclusione sociale e combattere la povertà e ogni discriminazione".

Aspetto importante di questo ciclo di programmazione è il coordinamento e la sinergia con altri fondi o strumenti finanziari. Il FSE collaborerà attivamente con il FESR e il PSR in particolare per intervenire nelle Aree Interne e per lo sviluppo urbano sostenibile. Momenti di raccordo sono stati inoltre pensati tra i programmi operativi regionali e quelli nazionali per aumentare l'impatto a livello territoriale dei Fondi ed evitare inutili sovrapposizioni.

Gli Assi Prioritari del POR FSE che presentano significative sinergie con le linee di indirizzo del PEAR sono l’Asse 1 - Occupazione e l’Asse 3 - Istruzione e formazione.

In tabella seguente si riportano gli elementi principali (Obiettivi Tematici, Priorità di Investimento, Obiettivi Specifici) degli Assi del POR FSE correlati alle azioni del PEAR.

<table>
<thead>
<tr>
<th>Elementi del POR-FSE correlati alle azioni del PEAR (2014-2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asse</td>
</tr>
<tr>
<td>1 OCCUPAZIONE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3 ISTRUZIONE E FORMAZIONE</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Per i dettagli relativi alle misure sopra citate dei tre strumenti di Programmazione (POR FESR, PSR e POR FSE) si rimanda alle azioni specifiche riportate nel PEAR adeguato per ogni settore e/o tecnologia; si riporta nel seguito la tabella di sintesi relativa alla correlazione tra le azioni del PEAR e le misure degli strumenti di programmazione esaminati.
Correlazione linee di sviluppo-Azioni programmazione regionale

<table>
<thead>
<tr>
<th>Macro obiettivi</th>
<th>Obiettivi generali</th>
<th>Linee di sviluppo</th>
<th>Azioni</th>
<th>Strumenti - programmi regionali</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EE.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ridurre i consumi energetici del settore residenziale</td>
<td>b.Iniziative di natura normativa e diffusione di strumenti finalizzati a favorire il corretto ricambio tecnologico di impianti e componenti edilizi, tra cui partnership pubblico-private ed il meccanismo delle ESCo.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EE.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incrementare l’efficienza energetica nei settori terziario, imprese e cicli produttivi</td>
<td>c.Definizione e diffusione di modelli di intervento per l’efficienza energetica anche attraverso la partecipazione di Regione Liguria a progetti e programmi europei in collaborazione con altre Regioni.</td>
<td>POR FESR 2014-2020: ASSE 4 Energia, OT04, Priorità 4b, OS 4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EE.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EE.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.G.1. Efficienza Energetica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Burden Sharing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.G.2. Fonti rinnovabili (Elettriche e Termiche)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FER. 1</td>
<td></td>
<td>Promuovere la realizzazione di impianti fotovoltaici su edifici ed in aree industriali o degradate dal punto di vista ambientale</td>
<td>c.Misure specifiche per la diffusione degli impianti fotovoltaici in combinazione con azioni volte all’incremento dell’efficienza energetica a valere sulla Programmazione dei Fondi Strutturali POR FESR 2014-2020 e PSR 2014-2020.</td>
<td>POR FESR 2014-2020: ASSE 4 Energia, OT04, Priorità 4b, OS 4.2 ASSE 4 Energia, OT04, Priorità 4c, OS 4.1 ASSE 6 Città, OT04, Priorità 4c, OS 6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not: O.G.1. Efficienza Energetica - O.G.2. Fonti rinnovabili (Elettriche e Termiche) - FER. 1
<table>
<thead>
<tr>
<th>Macro obiettivi</th>
<th>Obiettivi generali</th>
<th>Linee di sviluppo</th>
<th>Azioni</th>
<th>Strumenti - programmi regionali</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Favorire l'installazione di impianti eolici attraverso la semplificazione delle procedure autorizzative</td>
<td>d. Semplificazione delle procedure autorizzative attraverso l’analisi degli elementi di attenzione ambientali e paesaggistici che insistono sul territorio regionale al fine di fornire un quadro di indirizzo per la presentazione di progetti compatibili con i vincoli e gli elementi di criticità evidenziati.</td>
<td>PSR 2014-2020: Sottomisura 4.01 Supporto agli investimenti nelle aziende agricole Sottomisura 04.02 Supporto agli investimenti nella trasformazione, commercializzazione e sviluppo dei prodotti agricoli</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c. Tavolo tecnico per la per la definizione dei criteri utili alla revisione della Cartografia delle aree non idonee alla collocazione di impianti eolici.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sostenere l’installazione di impianti di piccola taglia nel settore idroelettrico e la riattivazione di centraline esistenti</td>
<td>c. Misure conoscitive relative alle derivazioni, al bilancio idrico ed agli impianti idroelettrici dismessi.</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d. Tavolo tecnico per la definizione dei criteri utili alla mappatura dei tratti fluviali non idonei alla collocazione di impianti idroelettrici.</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incrementare la produzione energetica da biogas da RSU</td>
<td>b. Misure specifiche sulla produzione energetica da biogas derivante da RSU ed acque reflue, in attuazione a quanto previsto dal Piano Regionale di Gestione dei Rifiuti.</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sviluppare la ricerca nei settori tecnologici correlati alle fonti rinnovabili ed all’efficienza energetica</td>
<td>b. Sostegno a progetti di ricerca, sviluppo ed innovazione nel settore dell’energia, in coerenza con quanto previsto dalla Smart Specialisation Strategy regionale e che vedano la collaborazione di GI, PMI e centri di ricerca (anche attraverso fondi POR FESR 2014-2020 e POR FSE 2014-2020).</td>
<td>POR FESR 2014-2020: ASSE 1 Ricerca e Innovazione, OT01, Priorità 1a, OS 1.5 ASSE 1 Ricerca e Innovazione, OT01, Priorità 1b, OS 1.1, 1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Favorire lo sviluppo delle Smart-grid</td>
<td>b. Misure specifiche per lo sviluppo di reti intelligenti attraverso la partecipazione a programmi europei.</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sostenere la diffusione di impianti a biomassa di piccola e media</td>
<td>b. Misure specifiche volte a favorire la creazione della filiera legno-energia e la produzione di energia da biomassa forestale, anche attraverso il ricorso a risorse della</td>
<td>PSR 2014-2020: Sottomisura 4.01 Supporto agli investimenti nelle aziende agricole Sottomisura 04.02 Supporto agli investimenti nella trasformazione, commercializzazione e sviluppo dei prodotti agricoli</td>
</tr>
<tr>
<td>Macro obiettivi</td>
<td>Obiettivi generali</td>
<td>Linee di sviluppo</td>
<td>Azioni</td>
<td>Strumenti - programmi regionali</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td>taglia attraverso lo sviluppo della filiera legno-energia e l'utilizzo della biomassa locale</td>
<td>programmazione PSR 2014-2020, in sinergia con quanto previsto dal Programma Forestale Regionale.</td>
<td>agli investimenti nella trasformazione, commercializzazione e sviluppo dei prodotti agricoli Sottomisura 06.02 Aiuti all'avviamento di attività imprenditoriali per attività extra-agricole nelle zone rurali Sottomisura 06.04(5c) Investimenti nella creazione di piccole imprese in zone rurali Sottomisura 07.02 Infrastrutture essenziali alle popolazioni rurali Sottomisura 08.06 Investimenti in tecnologie forestali, trasformazione, movimentazione e commercializzazione dei prodotti delle foreste Sottomisura 09.01 costituzione di associazioni e organizzazioni di produttori nei settori agricolo e forestale Sottomisura 16.02 supporto per progetti pilota e per lo sviluppo di nuovi prodotti, pratiche, processi e tecnologie Sottomisura 16.08 sostegno per la stesura di piani forestali di secondo livello</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incrementare il ricorso alla tecnologia solare termica</td>
<td>b. Misure specifiche di sostegno a progetti in combinazione con azioni volte all’incremento dell’efficienza energetica rivolte sia agli enti pubblici che alle PMI, a valere sui fondi POR FESR 2014-2020 e PSR 2014-2020.</td>
<td>POR FESR 2014-2020: ASSE 4 Energia, OT04, Priorità 4b, OS 4.2 ASSE 4 Energia, OT04, Priorità 4c, OS 4.1 ASSE 6 Città, OT04, Priorità 4c, OS 6.2</td>
<td></td>
</tr>
<tr>
<td>FER, 9</td>
<td></td>
<td>d. Azioni normative volte a favorire la diffusione della tecnologia delle pompe di calore.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macro obiettivi</td>
<td>Obiettivi generali</td>
<td>Linee di sviluppo</td>
<td>Azioni</td>
<td>Strumenti - programmi regionali</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POR FESR 2014-2020:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASSE 1 Ricerca e Innovazione, OT01, Priorità 1b, OS 1.1-1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASSE 3 Competitività delle Imprese, OT03, Priorità 3a, OS 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASSE 3 Competitività delle Imprese, OT03, Priorità 3b, OS 3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASSE 3 Competitività delle Imprese, OT03, Priorità 3c, OS 3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PSR 2014-2020:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sottomisura 01.01 Azioni di formazione e acquisizione di competenze</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sottomisura 01.02 Supporto alle attività diostorative e azioni di informazione</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sottomisura 01.03 Supporto agli scambi interaziendali di breve durata e alle visite di aziende agricole e forestali</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sottomisura 04.01 Supporto agli investimenti nelle aziende agricole</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sottomisura 04.02 Supporto agli investimenti nella trasformazione, commercializzazione e sviluppo dei prodotti agricoli</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sottomisura 06.02 Aiuti all'avviamento di attività imprenditoriali per attività extra-agricole nelle zone rurali</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sottomisura 06.04(5c) Investimenti nella creazione di piccole imprese in zone rurali</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sottomisura 08.06 Investimenti in tecnologie forestali, trasformazione, movimentazione e commercializzazione dei prodotti delle foreste</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sottomisura 09.01 costituzione di associazioni e organizzazioni di produttori nei settori agricolo e forestale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sottomisura 16.02 supporto per progetti pilota e per lo sviluppo di nuovi prodotti, pratiche, processi e tecnologie.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SE.1. Sostenere le imprese che operano nel settore della Green Economy in Liguria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SE.2. Sostenere lo sviluppo e la qualificazione nei settori edile ed impiantistico (efficienza energetica e c. Supporto alla competitività delle imprese nel settore dell’edilizia e dell’impiantistica attraverso il sostegno a progetti di innovazione produttiva ed organizzativa anche attraverso misure a valere sulla programmazione dei Fondi.</td>
</tr>
<tr>
<td>Macro obiettivi</td>
<td>Obiettivi generali</td>
<td>Linee di sviluppo</td>
<td>Azioni</td>
<td>Strumenti - programmi regionali</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>risparmio energetico)</td>
<td>PORFESR e PSR 2014-2020.</td>
<td>PSR 2014-2020:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Analisi e rilevazione dei fabbisogni in termini di innovazione e nuovi investimenti in collaborazione con le associazioni di categoria.</td>
<td></td>
<td>Sottomisura 01.01 Azioni di formazione e acquisizione di competenze</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Formazione ed aggiornamento degli operatori del settore impiantistico ed edile sulle tecnologie di razionalizzazione energetica e di sfruttamento delle fonti rinnovabili;</td>
<td></td>
<td>Sottomisura 01.02 Supporto alle attività dimostrative e azioni di informazione</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f. Accordi di collaborazione con gli ordini professionali per la promozione di programmi formazione continua.</td>
<td></td>
<td>POR FSE 2014-2020:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g. Formazione degli studenti di scuole di diverso ordine e grado, fino all’alta formazione.</td>
<td></td>
<td>ASSE 1 Occupazione, OT8, Priorità 8i, OS 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>h. Misure specifiche a valere sulla programmazione dei fondi PSR 2014-2020 e POR FSE 2014-2020</td>
<td></td>
<td>ASSE 1 Occupazione, OT8, Priorità 8ii, OS 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IF.1.</td>
<td>Promuovere la formazione professionale e l’alta formazione nel settore energetico anche con riferimento a nuove figure professionali ed ai giovani</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IF.2.</td>
<td>Coinvolgere i portatori di interesse nel settore dell’energia in tutte le fasi di attuazione del Piano</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IF.3.</td>
<td>Realizzare azioni di sensibilizzazione rivolte ai cittadini</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c. Informazione diffusa rivolta ai cittadini per la divulgazione della cultura dell’efficienza energetica e dello sfruttamento delle fonti rinnovabili.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d. Informazione specifica su strumenti finanziari ed opportunità tecnologiche</td>
<td></td>
</tr>
</tbody>
</table>

Riscontro nel Documento di PEAR adeguato:
- Cap. 6.2.1.2 “Il settore terziario” pag. 82
- Cap. 6.2.2 “Il settore pubblico” pag. 86
- Cap. 6.2.3 “Le imprese e i cicli produttivi” pag. 92
- Cap. 6.2.4 “Co/trigenerazione e il teleriscaldamento” pag. 99
- Cap. 6.3.1.1 “Il solare fotovoltaico” pag. 107
- Cap. 6.3.1.2 “L’eolico” pag. 114
- Cap. 6.3.2.1 “La biomassa legnosa” pag. 137
- Cap. 6.3.2.2 “Il solare termico” pag. 146
- Cap. 6.3.2.3 “Le pompe di calore” pag. 152
- Cap. 6.4 “Le azioni trasversali ai settori dell’efficienza energetica e delle fonti rinnovabili: informazione e formazione” pag. 154
I5. Si è provveduto a raccordare il PEAR con il POR FESR, il POR FSE ed il PSR, dettagliando le azioni di Piano sulla base di quanto indicato negli strumenti di programmazione e di quanto emerso durante gli incontri svolti con gli uffici regionali per il recepimento delle prescrizioni della VAS.

In fase di adeguamento sono state integrate all’interno del PEAR le misure di attenzione e mitigazione individuate dal Rapporto Ambientale e i criteri espressi nella normativa regionale, nazionale ed europea e negli strumenti di pianificazione regionali vigenti (Allegato 2). Si veda anche quanto indicato alla prescrizione P14.

Riscontro nel Documento di PEAR adeguato:

* Si veda riscontro a P4 per il raccordo tra le azioni di piano e la programmazione europea
* **Allegato 2** “Sintesi degli aspetti ambientali e misure di attenzione/mitigazione” per le misure di attenzione/mitigazione e i criteri prestazionali e localizzativi

Nell’Allegato 1 del PEAR è stato inserito il quadro normativo ambientale di riferimento:

- **b)Documenti internazionali**
 - Conferenza COP21, Parigi, Francia, 30/11/2012-12/12/2015

- **c)Documenti comunitari**
 - Direttiva Habitat 92/43/CEE
 - Direttiva Uccelli 2009/147/CE
 - Direttiva Acque 2000/60/CE
 - Direttiva 2007/60/CE - Valutazione e gestione dei rischi di alluvioni

- **d)Documenti nazionali**
• D.M. 10/09/2010 Linee guida per il procedimento di cui all’Art. 12 del D. Lgs. n. 387/2003 per l’autorizzazione alla costruzione e all’esercizio di impianti di produzione di elettricità da fonti rinnovabili nonché linee guida tecniche per gli impianti stessi
• Decreto del Ministero dell'ambiente e della tutela del territorio e del mare del 13/10/2016 - Designazione di 11 zone speciali di conservazione della regione biogeografica continentale e di 27 ZSC della regione biogeografica mediterranea insistenti nel territorio della Regione Liguria
• Decreto del Ministero dell'ambiente e della tutela del territorio e del mare del 24/06/2015 - Designazione di 14 Zone speciali di conservazione della regione biogeografica alpina insistenti nel territorio della regione Liguria
• Decreto del Ministero dell'ambiente e della tutela del territorio del 5/07/2007- Elenco delle zone di protezione speciale (ZPS) classificate ai sensi della direttiva 79/409/CEE
• D.P.R. n. 357 del 8/09/1997 e ss.mm.ii - Regolamento recante attuazione della Direttiva 92/43/CE relativa alla conservazione degli habitat naturali e seminaturali, nonché della flora e della fauna selvatiche
• D. Lgs. n. 152/2006 Testo unico Ambiente (recepimento direttiva acque)
• D. Lgs. n. 49/2010 - attuazione Direttiva 2007/60/CE
• D. Lgs. n. 42/2004 - Codice per i beni culturali e del paesaggio

e) Documenti regionali
• L.R. n. 28/2009 - Disposizioni in materia di tutela e valorizzazione della biodiversità
• DGR n. 1793 del 18/12/2009 - Istituzione Rete ecologica - L.R. 28/2009 Art. 3
• DGR n. 1444 del 2/11/2009 - Approvazione della rappresentazione cartografica degli habitat, delle specie ed altri elementi naturalistici rilevanti presenti sul territorio ligure
• DGR n.141 del 15/02/2008 - Approvazione "Linee guida per la progettazione, gestione e risanamento ambientale delle attività estrattive a cielo aperto e in sottosuolo e opere connesse
• L.R. n. 5 del 25/01/1993 - Individuazione dell’itinerario escursionistico denominato "Alta Via dei Monti Liguri" e disciplina delle relative attrezzature
• L.R. n. 24 del 16/06/2009 - Rete di fruizione escursionistica della Liguria
• DGR n. 1122 del 21/09/2012 - Approvazione linee guida impianti produzione energia da fonti rinnovabili.
• RR n. 3/2011 Tutela delle aree di pertinenza dei corsi d’acqua
• L.R. n. 18/1999 - Adeguamento delle discipline e conferimento delle funzioni agli enti locali in materia di ambiente, difesa del suolo ed energia
• DGR n. 412/2015 - Modifiche ed integrazioni alla mappatura delle aree interessate da inondazione negli eventi alluvionali dell’autunno 2014
• L.R. n. 15/2015 - Disposizioni di riordino delle funzioni conferite alle Province in attuazione della Legge n. 56 del 7/04/2014, (disposizioni sulle città metropolitane, sulle province, sulle unioni e fusioni di comuni)
• L.R. n. 13/2014 - Testo unico della normativa regionale in materia di paesaggio

Riscontro nel Documento di PEAR adeguato:
- Cap. 2 “Il Quadro normativo in materia di energia”
- Allegato 1 “Il Quadro Normativo sui temi ambientali”
18.1.1.1.1.2 4.3.2. Efficienza energetica

P7.pg 7 PM n. 47/2015 - “Con riferimento alla lettera a), occorre individuare strumenti attuativi volti a sostenere la massima efficientazione energetica degli edifici, ad esempio attraverso l’indicazione della classe energetica minima che è necessario garantire in caso di nuova edificazione (classe A) ovvero ristrutturazione (A? B? C?, da ammettere sulla base di parametri adeguati).”

17.Si rimanda alle indicazioni specifiche della normativa nazionale e regionale in materia di efficienza energetica, in particolare ai D.M. 26/6/2015 - Requisiti Minimi ed alla L.R. n. 32/2016). Attraverso la L.R. n. 32/2016 infatti la Regione Liguria ha recepito i D.M. 26/06/2015, che aggiornano sia le procedure per il calcolo dei requisiti minimi delle nuove costruzioni e di quelle sottoposte a ristrutturazione/riqualificazione energetica, sia il sistema di classificazione ai fini dell’attestazione energetica degli edifici. Il nuovo sistema per il calcolo dei requisiti minimi si basa sulla “metodologia dell’edificio di riferimento”, che è rappresentato da un edificio geometricamente identico a quello di progetto o reale (in termini di geometria, orientamento, ubicazione territoriale, destinazione d’uso e situazione al contorno) ed avente le caratteristiche termiche richieste dagli standard prestazionali introdotti attraverso i D.M. 26/06/2015. La definizione dei nuovi requisiti minimi introdotti a livello nazionale ha completato il recepimento della Direttiva 2010/31/UE, che all’art. 5 prevede l’applicazione da parte degli Stati Membri di un quadro metodologico comparativo per il calcolo dei livelli di prestazione ottimali in funzione dei costi. La classificazione energetica introdotta dai DM 26/06/2015 definisce nuove classi di alta efficienza (A4, A3, A2), per recepire le indicazioni della Direttiva 2010/31/UE che prevede standard “Nearly Zero Energy Buildings (NZEB)” a partire dal 31/12/2018 per gli edifici pubblici di nuova costruzione e dal 31/12/2020 per quelli privati. Secondo il nuovo sistema di classificazione, a partire dalle date sopra indicate un edificio di nuova costruzione o sottoposto a ristrutturazione importante per essere a norma dovrà appartenere almeno alla classe energetica A1.

Riscontro nel Documento di PEAR adeguato:
- Cap. 2 “Il Quadro normativo in materia di energia”
- Cap. 6.2.1.1 “Il settore residenziale”

18.1.1.1.1.3 4.3.3. Emissioni climalteranti

P8.pg 8 PM n. 47/2015 - “Il MATTM segnala l’opportunità di inserire tra i documenti di riferimento la “Strategia europea di adattamento ai cambiamenti climatici” presentata dalla Commissione Europea il 29 aprile 2013 e quindi di considerare la tematica della vulnerabilità delle infrastrutture energetiche e della resilienza dei sistemi energetici agli impatti dei cambiamenti climatici.”

18.Sono state inserite tra i richiami alla normativa di settore le Strategie Europea e Nazionale di Adattamento ai Cambiamenti Climatici, riportando in forma sintetica gli aspetti che possono essere ritenuti rilevanti per le infrastrutture energetiche.

Riscontro nel Documento di PEAR adeguato:
Cap. 2 “Il Quadro normativo in materia di energia” pag. 12; pag. 19

18.1.1.1.1.4 4.3.4. Fonti rinnovabili

P9.pg 11 PM n. 47/2015 - EOLICO OFF-SHORE: “Non esistono tuttavia motivi ostativi allo sviluppo del tema, che potrebbe essere favorito attraverso la promozione di investimenti (POR) volti all’approfondimento della fattibilità tecnico-economico di tali tipologie di impianti nella realtà ligure.”

Riscontro nel Documento di PEAR adeguato:
Cap. 6.3.1.2 “L’eolico”
come risultato alla mappatura dei tratti d'alveo con un potenziale idroelettrico residuo e di quelli interdetti delle Commissione Europea, dello sfruttamento idroelettrico nel territorio regionale, nel rispetto delle più volte richiamate Direttive Acque. A tal fine, la misura conoscitiva deve essere finalizzata alla pianificazione e programmazione sostenibile dello sfruttamento idroelettrico nel territorio regionale, nel rispetto delle più volte richiamate Direttive Acque ed Habitat. Alla luce di quanto sopra, ed in particolare nell’ottica di contribuire a rispondere alle osservazioni delle Commissione Europea, tale misura va implementata attraverso uno specifico Piano d’Azione che porti come risultato alla mappatura dei tratti d’alveo con un potenziale idroelettrico residuo e di quelli interdetti.
I10. Ai fini dell’adeguamento del PEAR al Parere Motivato, la Regione Liguria ha avviato il piano d’azione sull’idroelettrico attraverso la costituzione di uno specifico Tavolo Tecnico, che prevede il coinvolgimento dei soggetti con competenze trasversali in materia (risorse idriche, biodiversità, assetto del territorio…) e che si propone di affrontare i temi indicati sopra ed alla prescrizione P16. L’azione sull’idroelettrico è stata inoltre maggiormente dettagliata, richiamando in maniera sistematica i contenuti del Piano di Tutela delle Acque (PTA) approvato con DCR. n. 11 del 29 marzo 2016 e prevedendo per la fase attuativa lo svolgimento delle seguenti azioni:

- aggiornamento della banca dati delle derivazioni, collegamento a GenioWeb (già in corso di realizzazione per demanio idrico e pagamento dei canoni), al fine di aggiornare in maniera continuativa il database anche in fase di istruttoria delle pratiche e consentire l’aggiornamento dei dati anagrafici e l’inserimento delle misure da parte degli istanti;
- aggiornamento del modello di bilancio idrico sul territorio regionale, al fine di facilitare l’istruttoria delle pratiche, di quantificare meglio la disponibilità di risorsa idrica ed identificare le aree con potenziale residuo a favore degli investitori privati ai fini della redazione dei progetti;
- identificazione dei tratti di reticolo idrografico aventi area drenata superiore a 3 km² e georeferenziazione completa degli impianti idroelettrici esistenti e dismessi.

Per quanto riguarda gli aspetti geomorfologici, richiamati nel parere VAS, si ritiene opportuno, in una seconda fase di attuazione, a partire dagli studi svolti da Ispra (manuale IDRAIM) e dalle esperienze locali che ARPAL sta implementando in siti specifici, procedere alla definizione di parametri sintetici di valutazione applicabili estensivamente a tutta la regione.

b) Piano Tutela Acque

La Direttiva Europea 2000/60/CE, denominata Direttiva Quadro sulle Acque (DQA), nasce dall’esigenza di sviluppare a livello europeo un quadro normativo in grado di sostenere una politica comunitaria integrata in materia di acque. Gli obiettivi che si pone la DQA sono finalizzati alla conservazione e al miglioramento degli ecosistemi acquatici e degli ecosistemi direttamente connessi (zone umide, ambienti ripari, ecc), favorendo un utilizzo sostenibile degli idrocorpi significativi (ai sensi dell’Art. 77 del D. Lg s. n. 152/2006), mentre deve essere mantenuto lo stato di qualità ambientale dei corpi idrici ed in particolare specifica che deve essere raggiunto lo stato di qualità ambientale “buono”.

Il PTA persegue quanto previsto dalla DQA, indicando una serie di misure atte a conseguire gli obiettivi di qualità condizionati posti dagli strumenti a tutela sia idrologica che bionaturalistica dei corsi d’acqua.

a) Piano Tutela Acque

La Direttiva Europea 2000/60/CE, denominata Direttiva Quadro sulle Acque (DQA), nasce dall’esigenza di sviluppare a livello europeo un quadro normativo in grado di sostenere una politica comunitaria integrata in materia di acque. Gli obiettivi che si pone la DQA sono finalizzati alla conservazione e al miglioramento degli ecosistemi acquatici e degli ecosistemi direttamente connessi (zone umide, ambienti ripari, ecc), favorendo un utilizzo sostenibile della risorsa idrica, la riduzione dell’inquinamento delle acque superficiali e sotterranee e contribuendo a mitigare gli effetti delle inondazioni e della siccità.

A tal fine la DQA agisce promuovendo l’integrazione dei temi della gestione e della tutela delle risorse idriche con altri temi primari quali le infrastrutture, le politiche energetiche e quelle agricole, i trasporti, la pesca ed il turismo.

Il PTA definisce i requisiti per la realizzazione di nuove derivazioni (Art. 31) distinguendo fra interventi su sbarramenti esistenti e realizzazione di nuovi sbarramenti, stabilendo parametri localizzativi in funzione ad esempio della presenza di effetti cumulativi con derivazioni esistenti e dello stato di qualità ambientale presente. L’Art. 32 definisce inoltre misure per il rilascio di concessioni nei corpi idrici che alimentano acquiferi in stato quantitativo scadente.

Il PTA (Art. 37) indica l’utilizzo del Metodo ERA89 (Esclusione, Repulsione, Attrazione) nella valutazione dell’istanza di quantificare meglio la disponibilità di risorsa idrica ed identificare le aree con potenziale residuo a favore degli investitori privati ai fini della redazione dei progetti.

Per quanto riguarda la mappatura deve comprendere anche l’indicato censimento degli impianti idroelettrici dismessi, declinandolo nell’individuazione dei soli impianti la cui riattivazione sia coerente con i condizionamenti posti dagli strumenti a tutela sia idrologica che bionaturalistica dei corsi d’acqua.”

89 I criteri del Metodo ERA sono stati introdotti nel Piano di Gestione del Fiume Po 2015, Elaborato 7 Allegato 7.2 ed approvati con la Deliberazione dell’Autorità di Bacino n.8 del 17 dicembre 2015).
Tale metodologia rappresenta di fatto uno sbarramento agli interventi non compatibili dal punto di vista ambientale nelle procedure di verifica e rilascio delle concessioni di derivazione.

\[b) \text{Linee Guida per l’autorizzazione, la valutazione ambientale, la realizzazione e la gestione degli impianti per lo sfruttamento delle fonti energetiche rinnovabili (DGR n. 1122/2012)} \]

Le Linee Guida definiscono i criteri di ammissibilità territoriale, paesistica e ambientale ed i contenuti progettuali per gli impianti di produzione di energia da fonti rinnovabili soggetti a procedura di VIA regionale o screening ai sensi della L.R. n. 38/1998, ovvero nell’ambito delle relative procedure autorizzative. La preventiva definizione dei criteri di ammissibilità è finalizzata ad accelerare l’iter di svolgimento dei procedimenti autorizzativi e delle verifiche di compatibilità ambientale, quando previste, a ridurre i tempi di istruttoria e ad indirizzare le scelte progettuali verso localizzazioni e tipologie costruttive che facilitino l’approvazione dei progetti, oltre ad individuare le misure di mitigazione degli impatti. La definizione dei criteri si fonda sull’analisi dei riferimenti vincolistici e pianificatori vigenti alle varie scale e ambiti di competenza, nonché sulla constatazione degli impatti prodotti dalle varie tipologie di impianto qualora inseriti in contesti con determinate sensibilità ambientali. Il rispetto dei criteri e requisiti progettuali implica, in via generale, una elevata probabilità di valutazione positiva dei progetti.

Le Linee Guida sono articolate secondo quattro tipologie di impianti (fotovoltaico, eolico, biomassa e mini-idroelettrico), e riportano sia i criteri di ammissibilità che i contenuti progettuali delle istanze. Per i riferimenti specifici alla singola fonte energetica si rimanda ai chiarimenti di cui al punto P14.

Riscontro nel Documento di PEAR adeguato:

- **Cap. 6.3.1.3 “L’idroelettrico”**
- **Allegato 2 “Sintesi degli aspetti ambientali e misure di attenzione/mitigazione”**

\[
\text{P11.pg 13 PM n. 47/2015 - BIOMASSA FORESTALE: “Anche con riferimento a questa fonte sussistono indirizzi regionali specifici e condizioni di fattibilità attinenti alla filiera corta (DGR n. 1122/2012) che devono essere richiamati e integrati nella definizione dell’obiettivo. È necessario riallineare il PEARL con il POR 2014-2020, che a seguito di osservazioni specifiche della Commissione Europea non contempla più l’asse di finanziamento di impianti a biomassa (ma potenza piuttosto lo sfruttamento del biogas).”}
\]

111. Si è provveduto a raccordare il PEAR con il POR FESR ed il PSR. Si veda a tale proposito quanto riportato al precedente punto P4. Si sono inoltre richiamati gli indirizzi regionali presenti nelle Linee Guida Regionali (DGR n. 1122/2012). In particolare occorre ricordare che le Linee Guida Regionali definiscono per gli impianti a biomassa condizioni di ammissibilità dei singoli impianti in termini di fonti di approvvigionamento e rimandano a quanto previsto dalle Linee Guida Nazionali per quel che riguarda gli elementi per il corretto inserimento paesistico e territoriale (Sezione 3 della DGR n. 1122/2012).

Riscontro nel Documento di PEAR adeguato:

- **Cap. 6.3.2.1 “La biomassa legnosa”**
- **Allegato 2 “Sintesi degli aspetti ambientali e misure di attenzione/mitigazione”**

\[
\text{P12.pg 14 PM n. 47/2015 - SOLARE TERMICO: “Anche in questo caso è necessario meglio definire le indicazioni operative a sostegno del raggiungimento dell’obiettivo indicato.”}
\]

112. Si è provveduto a definire meglio le indicazioni operative a sostegno della diffusione degli impianti solari termici, in particolare raccordando il PEAR con il POR FESR e richiamando le specifiche disposizioni normative vigenti.

Riscontro nel Documento di PEAR adeguato:

- **Cap. 6.3.2.2 “Il solare termico”**

4.4. Prescrizioni relative alla sezione “Sintesi dei contenuti del R.A.”

18.1.1.1.1.15 4.4.1. Analisi delle alternative

\[
\text{P13.pg 17 PM n. 47/2015 - “Il raffronto deve essere completato con il grafico relativo allo stato 2003, così da poter qualificare gli effetti del precedente piano, e l’efficienza dei finanziamenti impiegati}
\]

#
I13.È stato inserito lo scenario relativo alla situazione delle fonti rinnovabili di energia per l’anno 2005 (anno più prossimo al 2003 disponibile presso il Sistema Informativo Regionale Ambientale della Liguria), oltre all’allineamento dei dati di base all’anno 2011 (si veda prescrizione P2). In fase di revisione del Piano i dati di potenza installata mancanti sono stati stimati sulla base di ore convenzionali di funzionamento e di statistiche disponibili a livello nazionale, secondo quanto già svolto in fase di redazione del PEAR.

<table>
<thead>
<tr>
<th>TIPOLOGIA FONTE RINNOVABILE (FER-E e FER-C)</th>
<th>Situazione 2005</th>
<th>Produzione di Energia Rinnovabile [ktep/anno]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotovoltaico</td>
<td>1,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Eolico</td>
<td>4,3</td>
<td>0,7</td>
</tr>
<tr>
<td>Idroelettrico</td>
<td>72,5</td>
<td>20,9</td>
</tr>
<tr>
<td>Biogas</td>
<td>13,9</td>
<td>7,6</td>
</tr>
<tr>
<td>Biomassa</td>
<td>468,2</td>
<td>48,3</td>
</tr>
<tr>
<td>Solare Termico</td>
<td>7,0</td>
<td>0,4</td>
</tr>
<tr>
<td>Pompe di calore</td>
<td>1146</td>
<td>43,1</td>
</tr>
<tr>
<td>TOTALE</td>
<td>121,1</td>
<td></td>
</tr>
</tbody>
</table>

Riscontro nel Documento di PEAR adeguato:
Cap. 4.3 “Gli esiti del PEAR 2003 ed il PEAR 2014 – 2020” pag. 37

18.1.1.1.1.6 4.4.2. Stima degli impatti delle Azioni di Piano

P14.pg 18 PM n. 47/2015 - “Occorre inoltre ricordare che:
– la DGR n. 1122/2012 determina condizioni per l’autorizzabilità degli impianti da fonti rinnovabili, e non solo per la valutabilità dal punto di vista ambientale, quindi agiscono anche al di fuori del campo di applicazione della VIA;
– la stessa DGR definisce anche il quadro di riferimento per la fattibilità e quindi la valutazione e l’autorizzazione degli impianti a biomassa, ponendo dei vincoli sia sulle caratteristiche che sulla provenienza del combustibile (filiera corta);
– il PGR – Piano Regionale Rifiuti - contiene criteri per la localizzazione degli impianti di trattamento rifiuti, compresi quelli per la degradazione anaerobica della frazione organica e la valorizzazione energetica del biogas;
– l’aggiornamento del PTA ridefinisce il quadro di riferimento per l’ammissibilità degli impianti miniidro e le indicazioni per il calcolo del D.M.V;
– a carico dell’aggiornamento del PFR è in corso la fase di consultazione/scoping, che prelude alla VAS. Anche se in generale si può affermare l’esistenza di un quadro normativo e programmatico che dovrebbe garantire la sostenibilità ambientale delle ricadute derivanti dall’attuazione delle linee di sviluppo del PEAR, é necessario mirare ad una maggior integrazione di queste ultime con il contesto di riferimento, esplicitando modalità attuative coerenti.”

I14.Sono state richiamate nel PEAR le indicazioni previste dalla normativa e dagli strumenti di pianificazione di settore vigenti (DGR n. 1122/2012, PTA, PGR, PFR....), i relativi criteri prestazionali e localizzativi e le attenzioni e mitigazioni derivanti dalla valutazione ambientale.
In particolare sono stati riportati nei documenti di Piano i riferimenti specifici a:

a) DGR n. 1122/2012;
b) Piano di Gestione dei Rifiuti e delle Bonifiche della Regione Liguria (PGR) e relativi Piani d’Area Metropolitana e Provinciali;
c) Piano di Tutela delle Acque;
d) Programma Forestale Regionale;
e) Normativa ambientale di settore (si veda la precedente prescrizione P6).
Ad integrazione rispetto a quanto previsto alle sezioni precedenti del documento, si richiamano nel seguito gli elementi principali da considerarsi in fase di revisione del PEAR.

a) DGR n. 1122/2012

Le Linee Guida sono suddivise secondo quattro tipologie di impianti (fotovoltaico, eolico, idroelettrico e biomasse), da tenersi in considerazione in fase di revisione delle corrispondenti azioni di Piano. Si riporta in tabella seguente la correlazione tra le linee di indirizzo del PEAR e le corrispondenti sezioni delle Linee Guida Regionali di cui alla DGR n. 1122/2012.

PEAR 2014-2020

<table>
<thead>
<tr>
<th>Macro oggetto</th>
<th>Obiettivi generali</th>
<th>Linee di sviluppo</th>
<th>Sezione DGR n. 1122/2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Burden Sharing</td>
<td>O.G.2. Fonti rinnovabili (Eletriche e Termiche)</td>
<td>FER.1 Promuovere la realizzazione di impianti fotovoltaici su edifici ed in aree industriali o degradate dal punto di vista ambientale</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FER.2 Favorire l'installazione di impianti eolici attraverso la semplificazione delle procedure autorizzative</td>
<td>2 Allegato 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FER.3 Sostenere l'installazione di impianti di piccola taglia nel settore idroelettrico e la riattivazione di centraline esistenti</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FER.7 Sostenere la diffusione di impianti a biomassa di piccola e media taglia attraverso lo sviluppo della filiera legno-energia e l'utilizzo della biomassa locale</td>
<td>3</td>
</tr>
</tbody>
</table>

b) Piano di gestione dei rifiuti e delle bonifiche della Regione Liguria (PGR)

In relazione alla necessità di integrare nel PEAR i criteri localizzativi indicati nel Piano di gestione dei rifiuti della Regione Liguria (PGR, approvato con DCR. n. 14/2015) si provvede all’inserimento nel PEAR dei criteri escludenti, penalizzanti e preferenziali identificati nel PGR per gli impianti di trattamento a tecnologia complessa di rifiuti urbani (trattamento meccanico/biologico, produzione Cdr/Css, compostaggio, digestione anaerobica, impianti di incenerimento).

Si ritiene inoltre opportuno, oltre a mantenere quanto già riportato nel PEAR in merito al processo di digestione anaerobica e valorizzazione energetica del biogas prodotto (Rif Cap. PGR “Individuazione delle tipologie impiantistiche necessarie per il trattamento dei RSU presenti a livello regionale”), richiamare quanto indicato dai piani d’area metropolitana e provinciale in corso di adozione, in merito alle localizzazioni proposte a livello provinciale. In particolare, sulla base degli indirizzi del PGR e delle prime quattro Deliberazioni del Comitato d’Ambito regionale per il ciclo dei rifiuti e ai sensi di quanto disposto dall’Art. 14, commi 2 e 3 della L.R. n. 1/201490 e ss.mm.ii., la Città Metropolitana di Genova e le Province di Imperia, Savona e La Spezia hanno provveduto all’elaborazione dello schema/proposta dei relativi piani d’area metropolitana e provinciali che definiscono la strutturazione ed organizzazione dei servizi relativi alla raccolta e al trasporto dei rifiuti, alla raccolta differenziata ed all'utilizzo delle infrastrutture al servizio della raccolta differenziata, definendo i bacini di affidamento, nonché alla gestione dei rifiuti residui indifferenziati ed al loro smaltimento.

La Città Metropolitana di Genova e le Province di Imperia, Savona e La Spezia hanno provveduto parallelamente a predisporre il rapporto preliminare richiesto ai sensi dell’Art. 8, comma 1, della L.R. n. 32 del 10/08/2012, ai fini dell’avvio della fase preliminare di confronto del processo di Valutazione Ambientale Strategica (‘scoping’ VAS):

- proposta di “Piano d’Area Omogenea Imperiese per la gestione integrata del ciclo dei rifiuti”, formalizzata con Deliberazione del Consiglio Provinciale n. 40 del 13/06/2016 e relativo “Rapporto preliminare sul Piano d’Area Omogenea Imperiese per la gestione integrata del ciclo dei rifiuti”, formalizzato con Decreto Presidente della Provincia n. 157 del 21/12/2016 (in aggiornamento alla precedente versione formalizzata con Decreto Presidente della Provincia n. 80 del 11/05/2016);

90 “Norme in materia di individuazione degli ambiti ottimali per l’esercizio delle funzioni relative al servizio idrico integrato e alla gestione integrata dei rifiuti”.

#
• schema di “Piano d’Area omogenea della Provincia di Savona per la gestione integrata dei rifiuti urbani”, con n. 1 documento di errata corris in allegato, come formalizzato con Deliberazione del Consiglio Provinciale n. 86 del 10 novembre 2016, e relativo rapporto preliminare sul “Piano d’Area Omogenea della Provincia di Savona per la gestione integrata dei rifiuti urbani”, formalizzato con Decreto Presidente della Provincia n. 146 del 21/12/2016 (in aggiornamento alla precedente versione formalizzata con Decreto Presidente della Provincia n. 84 del 12/08/2016);

• proposta di “Piano d’Area per la gestione integrata del ciclo dei rifiuti della Provincia della Spezia”, con n. 1 documento di errata corris in allegato e relativo rapporto preliminare sul “Piano d’Area per la gestione integrata del ciclo dei rifiuti della Provincia della Spezia”, formalizzati con Deliberazione del Consiglio Provinciale n. 74 del 24/11/2016.

c) Piano di Tutela delle Acque - Deflusso Minimo Vitale (D.M.V)

Per quel che riguarda il Piano di Tutela delle Acque, oltre a quanto indicato alla precedente prescrizione P10, vengono richiamate, in fase di adeguamento del PEAR, le indicazioni relative al D.M.V ed in particolare quanto disposto agli Artt. 26, 28, 29 e 30. Tali articoli riportano la definizione del D.M.V ed i fattori applicabili per la sua modulazione funzionale al rispetto delle componenti che caratterizzano e incidono sull’ecosistema acquatico e sullo stato di qualità ambientale. Il PTA permette deroghe all’applicazione del D.M.V in presenza di particolari situazioni locali (per un periodo massimo di 3 mesi) e per derivazioni inferiori a 0,7 l/s, ivi comprese quelle ad uso agricolo costituenti un’utenza unica complessiva, che non insistano nei tratti apicali di corsi d’acqua aventi area drenata pari o inferiore a 3 kmq, nel caso in cui non siano presenti opere di sbarramento che alterino il naturale deflusso delle acque e non siano presenti altre prese insistenti sullo stesso corso d’acqua entro 300 m dall’opera di presa.

d) Programma Forestale Regionale

Il Programma Forestale Regionale (PFR) 2007-2011 promuove e favorisce l’attivazione e la diffusione della filiera legno-energia, al fine anche di consentire la realizzazione delle previsioni del Piano Energetico Ambientale della Regione in relazione agli obiettivi di incremento delle fonti rinnovabili e in particolare della biomassa forestale, attuabile mediante la diffusione locale di impianti termici e/o di cogenerazione (sia di uso domestico, che collettivo e industriale) alimentati a legna (legna in pezzi, pellet, cippato) laddove le condizioni di fattibilità e sostenibilità sociale, economica e ambientale lo permettano.

Nell’ambito della filiera cippato-legno-energia va menzionato in modo particolare il prodotto “pellet”. In Liguria l’unico impianto industriale di pellet ha appena avviato la prima produzione e deve ancora entrare a regime. Sicuramente però il pellet rappresenta un prodotto trasformato estremamente interessante sia dal punto di vista di attivazione della filiera legno-energia, sia dal punto di vista commerciale.

Di per sé, la filiera del cippato, e nell’immediato futuro del pellet, può essere considerata come l’evoluzione del mercato della legna da ardere, rispetto al quale ha anche un’importante valenza industriale.

Le principali differenze tra cippato/pellet e legna da ardere riguardano la necessità per i primi di:

- un maggior numero di passaggi del prodotto grezzo per la trasformazione in prodotto finito,
- macchinari di trasformazione di tipo industriale generalmente estremamente costosi,
- movimentare grandi quantità di materia prima.

Essi presentano inoltre la possibilità infine di poter alimentare non solo impianti di tipo domestico, ma anche industriali per la produzione sia di calore (impianti termici), ma anche di energia elettrica ed aria condizionata (impianti di cogenerazione).

<table>
<thead>
<tr>
<th>Classe</th>
<th>Giudizio sintetico delle classi di interesse della filiera</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Buona presenza sul territorio di popolamenti idonei a questo utilizzo. Abbastanza numeri i soggetti interessati all'abbattimento; presenti anche soggetti interessati alla lavorazione ed al successivo impiego. Buona Potenzialità territoriale abbastanza ben sfruttata.</td>
</tr>
<tr>
<td>2</td>
<td>Buona presenza sul territorio di popolamenti idonei a questo utilizzo ed abbastanza buona. Beni rappresentati, anche se non molti numerosi i soggetti interessati all'abbattimento; presenti, pur sporadici, soggetti interessati alla lavorazione ed all'impiego. Potenzialità territoriali da discutere a breve con un discreto interesse di operatori del settore.</td>
</tr>
<tr>
<td>3</td>
<td>La presenza sul territorio di popolamenti idonei a questo utilizzo è buona ed abbassanza buona. Presenti ma non numerosi i soggetti interessati all'abbattimento. Sporadici la presenza e l'interesse per la lavorazione ed il successivo impiego. Potenzialità territoriali da discutere con spaccio per un interesse di operatori rilevante.</td>
</tr>
<tr>
<td>4</td>
<td>La presenza sul territorio di popolamenti idonei a questo utilizzo è scarsa e da migliorare con una presenza assente. Sulle potenzialità territoriali da considerare con un interesse di operatori pressoché assenti.</td>
</tr>
</tbody>
</table>

#
Il Programma Forestale Regionale (PFR) 2007-2011 è attualmente in fase di aggiornamento (si è conclusa la fase di consultazione/scoping ai sensi della L.R. n. 32/2012): la bozza di aggiornamento prevede sette Strumenti Operativi (S.O.), presentati come altrettanti allegati, atti a fornire informazioni pratiche agli stakeholder per la messa in opera delle azioni che Regione intende supportare. Fra questi lo Strumento Operativo 7 è inerente “Indicazioni per lo sviluppo della filiera bosco energia”.

Tale strumento ribadisce la volontà del PFR di promuovere a scala locale l’impiego di biomasse forestali derivate dalla gestione sostenibile del patrimonio forestale, così come indicato dalla normativa europea e nazionale vigente. I principi guida della Regione Liguria per lo sviluppo della filiera bosco-energia sono i seguenti:

- legalità e responsabilità in termini sociali ed ambientali, al fine di garantire l’evidenza del rispetto delle norme ambientali, l’adeguata formazione e la sicurezza degli operatori;
- salvaguardia ambientale, al fine di evitare la perdita netta di risorsa, garantendo una naturale ripresa delle provvigioni, perseguendo la protezione di habitat forestali di particolare pregio e assicurando la riduzione degli impatti collaterali alla movimentazione ed all’uso della risorsa (emissioni in atmosfera);
- ricadute locali, attraverso lo sviluppo di filiere corte che implichino un avvicinamento fra aree di origine della risorsa e fruitori/destinatari dell’energia prodotta, anche razionalizzando i soggetti economici coinvolti nella filiera e coinvolgendo produttori locali con conseguente miglior inserimento nel contesto sociale locale;
- efficienza e sostenibilità economica, per mezzo di un’adeguata progettazione e programmazione della filiera, con particolare attenzione alla piena utilizzazione delle diverse forme di energia ottenibili al fine di evitare dispersioni o dissipazioni.

Riscontro nel Documento di PEAR adeguato:

- Allegato 1 “Quadro Normativo sui temi ambientali”
- Allegato 2 “Sintesi degli aspetti ambientali e misure attenzione/mitigazione”
- Cap. 6.3.1.4 “Il biogas”
- Cap. 6.3.2.1 “La biomassa legnosa”
- Cap. 6.3.1.3 “L’idroelettrico”

P15.pg 19 PM n. 47/2015 - “La prevalenza delle realizzazioni in ambito acquedottistico per poter essere efficace va tradotta in condizioni operative (incentivazioni, premialità), per far sì che realizzazioni più problematiche dal punto di vista ambientale non abbiano luogo.”

I15.Si provvede alla revisione del relativo Capitolo del PEAR 2014-2020 (Cap 6.3.1.3).

Riscontro nel Documento di PEAR adeguato:

Cap. 6.3.1.3 “L’idroelettrico”

P16.pg 20 PM n. 47/2015 - “Un percorso che potrebbe soddisfare le esigenze dei vari soggetti competenti potrebbe essere così sintetizzato:

- integrare da subito all’interno della Carta delle aree non idonee per l’eolico i livelli di sensibilità/vincolo che Direzione regionale e Soprintendenza individuano nel proprio contributo;
- indicare all’interno del Piano la costituzione di un tavolo di lavoro (con soggetti, tempi e scadenze) volto a sviluppare ulteriormente il confronto su tale carta per quanto concerne gli aspetti paesaggistici, naturalistici, geomorfologici;
- individuare altresì fra le azioni di piano la costituzione di un tavolo di lavoro (con soggetti, tempi e scadenze – eventualmente coincidente col precedente) volto a definire la mappa dei tratti fluviali non idonei all’idroelettrico, ad integrazione di quanto già contenuto nel PTA ed in risposta alle richieste della Commissione Europea nell’ambito dell’EUPILOT 6011/14/ENVI sull’idroelettrico.

Si richiamano qui i principali contenuti del contributo della Direzione regionale MIBAC, che sintetizza anche le osservazioni di merito della Soprintendenza BPA.

Sì evidenzia che nella costruzione del Piano non appare adeguatamente sviluppata la motivazione delle scelte e delle modalità di valutazione, con riferimento agli indicatori di sostenibilità paesaggistica e con specifico riferimento al sistema dei beni culturali; la valutazione delle alternative esaminate con particolare riferimento al bilanciamento del contributo delle diverse componenti energetiche in relazione alla disponibilità e consumo di suolo e risorse paesaggistiche; il perseguimento del miglioramento prestazionale degli edifici specialisti ed industriali.

Nel Rapporto ambientale non appaiono adeguatamente descritti e valutati gli elementi specifici relativi al patrimonio culturale ligure, quali in particolare le aree di rilevanza paesaggistica: le aree sottoposte a dichiarazioni di notevole interesse pubblico che insistono sul territorio regionale; le aree sottoposte a tutela ex
Le agenzie di competenza, che si occupano della tutela del patrimonio culturale e ambientale, come il Ministero dell'Ambiente e del Territorio e il Ministero per i Beni e le Attività Culturali, devono lavorare in stretta cooperazione con le regioni e le amministrazioni locali per sviluppare strategie di tutela che valutino adeguatamente le implicazioni delle possibili immissioni di fonti energetiche.

In particolare, in aree come la Liguria, con la sua ricca patrimonio naturale e culturale, è fondamentale preoccuparsi di evitare che le attività energetiche influiscano negativamente sul paesaggio e sulla qualità del territorio. Le aree non idonee per l'installazione di impianti eolici devono essere identificate attraverso uno studio dettagliato e adeguato.

Si richiama in merito quanto previsto dalle Linee guida nazionali emanate con D.M. del 10 settembre 2010 dal Ministero dell’Ambiente ed il Decreto Ministeriale per il benessere ambientale, che stabilisce criteri per la definizione di siti inidonei per la collocazione di impianti di produzione di energia da fonti rinnovabili, ed in particolare i contenuti del paragrafo 17, che indica la necessità di un'istruttoria condotta sulla base di precisi criteri descritti dall'allegato n.3 delle linee guida stesse, tra cui rilevano in particolare (punto f) per l'individuazione delle aree particolarmente sensibili e vulnerabili sia la presenza di siti inseriti nella lista del patrimonio Unesco, sia la presenza di siti tutelati ai sensi della parte II e III del citato D.Lgs n. 42/2004 s.m.i..

La tessitura minuta delle tracce storico-paesaggistiche del territorio ligure e le aree di eccellenza per i valori paesaggistici e identitari da esse espressi costituiscono dunque elementi e aspetti che non possono considerarsi nella formulazione del Piano e nel peso da assegnare alle diverse fonti energetiche da utilizzare per raggiungere gli obiettivi prefissati, anche in relazione agli obiettivi del precedente PEAR non ancora conseguiti.

Inoltre si ribadisce l'inadeguatezza della carta dei siti inidonei per la realizzazione di impianti eolici. In particolare, si osserva che i siti UNESCO liguri "Cinque Terre, Porto Venere e le Isole" e "Genova, Le Strade Nuove e il Sistema dei Palazzi dei Rolli" non sono ricomprese nei perimetri delle aree non idonee: tale lacuna va colmata con la modifica della Cartografia delle Aree non Idonee.

Occorre poi considerare che sulla scorta delle richieste avanzate dalla Decisione 37COM 7B.78 del Comitato del Patrimonio Mondiale, di concerto con Regione – coinvolta nel gruppo di lavoro interistituzionale per la predisposizione del Piano di Gestione del sito – è stata definita una buffer zone, ufficialmente trasmessa al Centro del Patrimonio Mondiale come procedura di modificazione minore del perimetro (paragrafi 163 e 164 delle Linee Guida Operative per l’Applicazione della Convenzione del Patrimonio Mondiale) dal MIBACT - Segretariato Generale in data 27 gennaio 2015 prot. 955, e il suo perimetro è stato determinato anche tenendo conto dell'incidenza visiva di eventuali impianti eolici (con pale fino ad altezza 100 m) sul sito UNESCO. È necessario che anche l'area compresa nel perimetro della zona buffer proposta per il sito UNESCO "Cinque Terre, Porto Venere e le Isole" sia compresa nella Cartografia delle aree non idonee.

Si torna infine a chiedere (si veda nota della Direzione Regionale prot. 3489 del 13 maggio 2013) che sia avviato con la massima urgenza un tavolo di confronto tra gli uffici competenti del Ministero e Regione per addivenire ad una Cartografia delle Aree non Idonee, che tenga conto delle aree sottoposte a tutela ai sensi della parte III del Codice e di quelle aree di eccellenza paesaggistica, anche ove queste non fossero sottoposte a tutela.

Tale attività di confronto dovrebbe essere volta anche a valutare gli eventuali impatti visuali di impianti per lo sfruttamento delle fonti energetiche rinnovabili sul sito UNESCO "Genova: le Strade Nuove e il Sistema dei Palazzi dei Rolli" e, in base agli esiti, definire l'appropriate area non idonea a protezione dei valori del sito. Si evidenzia che Via Balbi gode di una visuale aperta verso ponente, per la protezione della quale è opportuno svolgere studi di impatto sulle visuali che da essa si godono. Analoghi studi andrebbero realizzati per l'Aurelia e l'Alta via dei Monti Liguri che costituiscono i due principali percorsi storico — paesaggistici della Liguria che ne strutturano il paesaggio.

Anche il contributo del settore Urbanistica e tutela del paesaggio regionale evidenzia come la carta delle aree non idonee possa essere accresciuta da input conoscitivi determinati da criteri che meglio evidenzino le situazioni di forte deterrenza da quelle di maggiore fattibilità, se non di auspicabilità. In tal senso si supererebbe il senso deterministico della mera "zonizzazione" in favore di una più accurata scelta ponderata sulle diverse componenti valutative, che aiutino alla miglior salvaguardia degli ambienti costruiti e delle caratteristiche paesistico-ambientali da preservare, e contestualmente a garantire la necessaria condizione di fattibilità agli impianti di progetto. Tale carta, così rivista, eventualmente applicabile anche per tutte le tipologie di impianto per le quali sia opportuna la verifica localizzativa, può costituire un elemento "work in progress" per il PEAR, anche a supporto delle azioni di monitoraggio. Soprattutto per gli impianti di produzione energetica più impattanti, con effetti territoriali ben più estesi rispetto alla loro mera ubicazione fisica, occorre la più attenta valutazione del consumo di suolo, della collocazione percettiva e logistica - rilevando che la morfologia territoriale ed orografica ligure non offre, anche per ragioni storico-insediative e paesistico-ambientali, molte e indifferenziate opzioni di scelta. Gli stessi criteri indicati dal PTR possono venire ulteriormente implementati per evitare interferenze impropri e incongruenti tra i vari aspetti, senza precludere in via assolutistica l’utilizzo di fonti energetiche che possono portare vantaggio alla popolazione residente e predisporci come di utilità e vantaggio pubblico. L’affinamento e l’approfondimento dei criteri valutativi come sopra indicati, potrebbe agevolare la più corretta ed efficace azione, non solo del PEAR ma anche degli strumenti di pianificazione, anche avvalendosi del supporto conoscitivo offerto dai diversi piani, sia a livello regionale che locale.
Segnala inoltre che il corretto richiamo alle linee guida, per quanto riguarda gli ambiti indicati come conflittuali per le localizzazioni degli impianti deve essere completato anche dagli ambiti insediativi: ME e SME. Ritiene condivisibile la proposta per la costituzione di un tavolo di lavoro tra i diversi soggetti interessati, volto all'implementazione dei sopracitati criteri e ad azioni di coordinamento tra programmazione, pianificazione e tutela.

La Soprintendenza Archeologica segnala la necessità di integrare la mappa delle aree non idonee con le evidenze e i potenziali archeologici regionali; si ritiene che sarebbe opportuno allargamento del tavolo di lavoro suddetto anche queste competenze."

116. Per quanto riguarda la revisione della Cartografia delle Aree Non Idonee alla collocazione di impianti eolici è stato attivato un apposito Tavolo Tecnico con la funzione di “individuare criteri condivisi per la revisione della Cartografia delle Aree Non Idonee alla collocazione di impianti eolici di cui alla DCR. n. 3/2009”.

Il Tavolo Tecnico in particolare risulta composto da:

- Coordinatore (Dipartimento Sviluppo Economico), con la funzione di convocare e presiedere il Tavolo Tecnico, garantendone lo svolgimento dei lavori e stimolando il confronto tra i membri partecipanti, al fine di pervenire a soluzioni condivise;
- Segreteria Tecnica (IRE SpA), che fornisce il necessario supporto tecnico-scientifico alle attività di Coordinamento;
- Membri del Tavolo Tecnico, i quali contribuiscono attivamente, ciascuno per le proprie competenze, alla formulazione dei criteri per la revisione della Cartografia delle Aree Non Idonee, collaborando alla definizione di soluzioni condivise. Sono membri del Tavolo Tecnico i rappresentanti di:
 - Settore Parchi e Biodiversità - Regione Liguria;
 - Servizio Tutela del paesaggio e demanio marittimo - Regione Liguria;
 - Settore Assetto del Territorio - Regione Liguria;
 - ARPAL;
 - Soprintendenza Archeologia, Belle Arti e Paesaggio per la Città Metropolitana di Genova e le province di Imperia, La Spezia e Savona;
 - Segretariato Regionale del Ministero dei Beni e delle Attività Culturali e del Turismo per la Liguria.

In relazione alla definizione dei tratti fluviali non idonei all’idroelettrico, a seguito di approfondimenti svolti con il settore regionale competente, si ritiene opportuno, recepire i contenuti del PTA, il cui patrimonio conoscitivo consente il superamento di osservazioni sostanziali a suo tempo formulate, e prevedere, nella fase attuativa del PEAR, lo svolgimento di attività funzionali alla messa a punto degli adeguati strumenti, secondo quanto indicato alla prescrizione P10. E’ stato inoltre attivato, analogamente a quanto svolto per la fonte eolica, uno specifico Tavolo Tecnico dedicato all’idroelettrico, che prevede il coinvolgimento dei soggetti con competenze trasversali in materia (risorse idriche, biodiversità, paesaggio, assetto del territorio…). Si veda anche P10.

Riscontro nel Documento di PEAR adeguato:
- Cap. 6.3.1.2 “L’eolico”
- Cap. 6.3.1.3 “L’idroelettrico”

P17.pg 22 PM n. 47/2015 - “Occorre dare una definizione univoca di cosa si intenda per teleriscaldamento, ai fini dell’attuazione del piano e delle necessarie garanzie di efficienza energetica e sostenibilità ambientale.”

117. Definizione di teleriscaldamento:
Con teleriscaldamento/teleraffreddamento si intende una rete di tubazioni, quasi sempre a circuito chiuso che permette di trasportare calore/freddo a distanza (tramite fluidi termovettori quali acqua o vapor acqueo surriscaldati) fino ai singoli utilizzatori. Il calore/freddo distribuito all’utenza viene prodotto da apposite centrali o recuperato da stabilimenti dedicati a scopi produttivi diversi. Il calore prodotto viene trasportato attraverso le reti di teleriscaldamento, viene quindi ceduto agli utenti attraverso appositi scambiatori di calore, contabilizzato con appositi strumenti di misura e quindi periodicamente fatturato all’utenza.
L’esercizio commerciale di una rete di teleriscaldamento o teleraffrescamento richiede le seguenti operazioni:
- produzione calore/freddo;
- trasporto e distribuzione a distanza;
- cessione all’utenza;
contabilizzazione e fatturazione.

Riscontro nel Documento di PEAR adeguato:
Cap. 6.2.4 “La co/trigenerazione ed il teleriscaldamento” pag.96

P18.pg 22 PM n. 47/2015 - “Per quanto concerne il comparto suolo, si richiamano i contenuti salienti del contributo del settore regionale competente, nel quale si rileva come potenziali interferenze possano risultare in relazione alle linee di sviluppo:

- FER2 – eolico: modifiche degli equilibri naturali dei versanti sia in relazione alla localizzazione dell'impianto e delle strutture e della logistica per realizzarlo;
- FER3 – mini-idroelettrico: interferenza con il regime idraulico del corso d'acqua;
- FER7 – biomassa: modifica della funzione di protezione del bosco in relazione all'equilibrio dei versanti.

Il Piano sotto questi aspetti rimanda, genericamente, alla necessità che nella localizzazione degli stessi si debba tener conto delle indicazioni per la prevenzione del dissesto idrogeologico. Questa indicazione di massa si riferisce al singolo intervento ma in particolare per quanto riguarda FER3 e FER7 è opportuno che la localizzazione degli interventi, a livello di sottobacino/bacino, derivi, proprio per le implicazioni che comporta, da una preventiva programmazione degli impianti di cui trattasi a livello di bacino idrografico, mentre la semplificazione FER2 non deve costituire un elemento di minor attenzione in relazione al mantenimento/miglioramento dello stato del territorio.

Per quanto concerne aspetti più puntuali:
Capitolo 2.2.2 Componenti ambientali: Suolo ed assetto idrogeologico:
- occorre aggiornare/implementare i richiami ai principali riferimenti normativi inserendo a livello regionale la legge 18/99 e 58/2009 e il Regolamento regionale n.3/2011;
- per le aree interessate da fenomeni di esondazione si rileva la necessità di richiamare anche quanto espresso nella DGR 59/2015, sia in relazione alla mappatura delle aree interessate da inondazione negli eventi alluvionali dell'autunno 2014 e alla conseguente disciplina di salvaguardia che agli indirizzi in ordine all'espletamento delle attività di pianificazione territoriale e di protezione civile;
- la percentuale delle aree boscate soggette a fenomeni franosi indicata a pag 45 non coincide con analogo dato riportato nel Rapporto preliminare del Programma Forestale regionale a pag. 9. Considerato che sono entrambi dati riportati su documenti regionali risulta opportuno una verifica su tale aspetto;
- non si comprende il significato della frase conclusiva (pag.48) del capitolo riferito agli interventi di manutenzione ordinaria;
- occorre ricondurre i dati riportati a quanto espresso nell'aggiornamento della Relazione dello stato dell'ambiente dell'anno 2014.

Capitolo 4.1.4 Coerenza con la pianificazione regionale:
- pag.158 Tabella 4.1.4- D Non si comprende come gli obiettivi del PEAR FER1 promuovere la realizzazione di impianti fotovoltaici su edifici o in aree .. risulti coerente o concorra all'attuazione degli obiettivi di pianificazione dei Piani di bacino."

118.Nella versione definitiva del PEAR vengono riportati i contenuti salienti del contributo del settore regionale competente; per quanto riguarda i richiami ai principali riferimenti normativi la Legge n. 58/2009 è stata abrogata e sostituita dalla L.R. n. 15/2015 sul riordino delle funzioni conferite alle Province.

Si precisa che:
- la percentuale delle aree boscate soggette a fenomeni franosi viene ricondotta a quanto riportato nel Rapporto Preliminare del Programma Forestale regionale a pag. 9 (dato ottenuto dall’intersezione tra le informazioni della Carta dei Tipi Forestali e del Progetto Inventario dei Fenomeni Franosi in Italia (IFFI));
- la frase conclusiva (pag.48) del capitolo del Rapporto Ambientale, relativa agli interventi di manutenzione ordinaria si riferiva al numero di interventi realizzati da soggetti pubblici nel periodo 2008-2011;
- la correlazione tra la linea di sviluppo FER 1 del PEAR 2014-2020 (pg 158) e la Pianificazione di Bacino è da ritenersi nulla (trattasi di refuso).

Eventuali riferimenti presenti nel PEAR relativi alla Relazione dello stato dell'ambiente sono stati aggiornati sulla base delle informazioni pubblicate.

Riscontro nel Documento di PEAR adeguato:
- Allegato 1 “Quadro Normativo sui temi ambientali”
18.1.1.1.1.1.7 4.4.3. Studio di Incidenza

I19. Si veda la prescrizione P16.

Riscontro nel Documento di PEAR adeguato:
Cap. 6.3.1.2 “L’elico”

18.1.1.1.1.8 4.4.4. Monitoraggio

P20. pg 28 PM n. 47/2015 - “Occorre traguardare l’integrazione del programma di monitoraggio del PEARL anche con il monitoraggio del PSR e del nuovo PTA. Nell’ottica di evitare duplicazioni rispetto ai programmi di monitoraggio degli strumenti di programmazione e pianificazione regionale, è necessaria una revisione degli indicatori proposti, a garanzia della loro rappresentatività, opportunità, idoneità di scala, popolabilità di partenza. In generale è opportuno traguardare una riduzione del numero complessivo. In relazione al tema biodiversità, è necessario che il PEAR garantisca la raccolta e successiva elaborazione delle informazioni quali-quantitative derivanti dai monitoraggi ante e post operam prescritti per gli impianti da fonti rinnovabili, in modo di definire il quadro conoscitivo di riferimento necessario all’auspicata semplificazione procedurale. Responsabilità, risorse e tempi andrebbero individuati con maggiore schematicità. anche per quanto concerne il monitoraggio, a garanzia del suo corretto e adeguato svolgimento occorre individuare le risorse necessarie nell’ambito del POR 2014-2020 (presumibilmente nell’Assistenza tecnica).”

I20. Nell’adeguamento del PEAR 2014-2020 è stata effettuata la revisione degli indicatori (confronto con sistemi monitoraggio PSR e PTA) e del relativo piano di monitoraggio.

Riscontro nel Documento di PEAR adeguato:
• Cap. 6.8 “Il Monitoraggio del Piano – Le prestazioni energetiche”
• Allegato 3 “Piano di Monitoraggio”

4.5. Prescrizioni relative alla sezione “Osservazioni”

P21. pg 30 PM n. 47/2015 - “Si rileva come le indicazioni strategiche del PEAR siano sostanzialmente coerenti con tali indirizzi, in quanto si concentrano sull’adozione di impianti di taglia medio-piccola per la produzione di calore, privilegiando in particolare le soluzioni dotate di sistemi di filtraggio dei fumi efficienti. Si rileva tuttavia come l’indicazione esplicita di soglie dimensionali era contenuta nelle relative misure del POR, e che per maggior chiarezza è ora necessario esplicitare nel PEAR la taglia e le caratteristiche degli impianti ritenuti ammissibili ai fini del raggiungimento dell’obiettivo relativo alla biomassa.”

I21. Sono state inserite indicazioni sulla potenza per impianti a biomassa.

Riscontro nel Documento di PEAR adeguato:
Cap. 6.3.2.1 “La biomassa lagnosa”